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Abstract

This report is the second part of a study of Rayleigh-Bloch (R-B)

wave expansions for plane diffraction gratings. The principal concepts

and results of the study, including the definition and construction of

the R-B waves, the formulation of the corresponding R-B wave expansion

theorem and the main ideas for the proofs were given in part I. The

present part II contains complete proofs of the results whose proofs

were omitted or only sketched in part I.
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Introduction.

This report is a companion to "Rayleigh-Bloch Wave Expansions

for Diffraction Gratings I." In that report the concept of a Rayleigh-

Bloch, or R-B, wave for a diffraction grating was introduced and the

main concepts and results of a theory of R-B wave expansions were

developed. Proofs that were omitted or only sketched in part I are

presented in full here. From a technical view-point the central concepts

of the theory of R-B wave expansions, as developed in part I, are the

holomorphic family (Ap,;,r : M 6 U} and the corresponding analytic

continuation of the resolvent of the reduced grating propagator A p. The

proofs of the basic properties of Ap,C,r, described in §4 of part I, are

surprisingly intricate and make up the main part of this part II. They

are |eveloped in S8. The theorems concerning the R-B wave expansions

for the reduced propagator Ap, formulated in §5 of part I, are proved in

19. FinA!l,, the R-B wave expansions for the full grating propagator A,

presented in 56 of part I, are proved in §10. References cited with

square brackets in this report refer to the list of references at the

end of part I.

t

f1



§8. Proofs of the Results of §4.

The properties of the class E described by Lemma 4.1 arep, z,r

essential for the construction of the Riemann surface M and familyp
{Ap,4,r : M p}. The proof of the lemma outlined in §4 is therefore

completed here.

Proof of Lemma 4.1. Assume that u 6 D(A loc ) and define v(x,y)
p

exp {-ipx} u(x,y). Then v e L 2 'X°c(AS) and satisfies the p-periodic
boundary conditions (3.7) with p - 0. Thus if ny is the cylinder

obtained by identifying the points (-i,y) and (w,y), y e y, it follows

that v is a distribution solution of Av + 2p Dxv + (z-p2 )v

- epxf CL°C(). Let h' satisfy 0 < h' < h, , C G. Such numbers

h' exist if C G. Then ,- {(x,y) I y > h'} is contained in

the interior of f7 and the interior elliptic estimates of El] imply that

2,10C( y
v L2Eo ,). This result implies (4.6) and (4.8) of Lemma 4.1.

Moreover, f - 0 in Q and the regularity theory of [1] implies
} ~moc r

v e L2' (94) for all m C Z which implies (4.9) and (4.10).

It remains to prove (4.7). Note that if v is defined as above

then

1 r i(p~1)x1J imi
(8.1) um(y) =- u(xy)dx - - v(x,y)dx vm(y).

Hence (4.7) is equivalent to the statement that

(8.2) V(xY) " v(y) e imX in

3
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where the series converges to v in L 2 '.°(). To prove this note that

(emX I m E Z} is an orthogonal sequence in L(',k,) for any k, k' such

that h < k < k' < -. Next define

(8.3) PI v(xy) v(y) e m x

where vm is defined by (8.1). Then direct calculation shows that

(8.4) P : (k,) ) L Y is boundedit 22 (,k' bounded

and

(8.5) p2 _ p P* in L2(,)

i.e., P, is an orthogonal projection. It follows that

(8.6) Qx - 1 - P,

is also an orthogonal projection in L2(k,k, ). Note that the convergence

of (8.2) in L' ,)C "'_ is equivalent to the condition

(8.7) l £vl 0 for all v 6 L2(,Y
liM 1 QZV y

where 1-12 is the norm in L2(11 k,). Now (8.7) follows from classical

Y

restrictions to of functions from C(V. Moreover, this set is

dense in L2 . Thus if v E 2 k,k, and v'k) then

(8.8)£ vI2 2 (Q v,v) 2 - (Qt(v-v'),v)2 + (Q v',v)2(8.8)

< Iv-v'1 2 lV12 + I Q v912 Iv1 2

I T



i
5

It follows that

(8.9) li Sup IQt vl2 < Iv-v'lv I

for all v' 6 Cm(6,k,) which implies (8.7).

Proof of Theorem 4.2. To prove the continuity of the mappings

(p,4) * Wp.m() for all (pC) 6 M and m e Z let (po,Co) e M, mE Z and

e > 0. It will be shown that there exist po(e) > 0 and 60 (e) > 0 such

that

(8.10) 1wp () - wp (Co)l < e for (p,C) 6 N(po,o,p,6)

provided 0 < p < po(e), 0 < 6 < 60(e).

To prove (8.10) note that in Cases 1 and 2 of the definition of

N(pOo,,p,6) one has, for every m E Z,

(8.11) W p4mW (( )- (p-+m)2)1/2 , wpo.m() - ±(po ( O) - (po-) 2) 1/2

where the square roots have non-negative imaginary part and the ± signs

are the same for each m E Z. Moreover,

(8.12) 7(), p(i o) - E D(zo,p) and [p - Pol < 6

for (p,;) E N(po,C 0 ,p,6). Hence there exist po(e) > 0, 60(c) > 0 such

that

jwp.,m(O; - w poft( o)

(8.13)

()- (p+M)) 1 /2  (7p ( o) (po"M)2)1/21 < E

for (p,C) 6 N(po,to,po(e),60 (e)). To prove (8.10) in Case 3 note that

in this case if (p,;) C N(po, o,p,6) then one has both z, - (PO + mo)2
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and (p + mo)2 in D(z0 ,p) for 6 < 6o(p). Moreover w (Co)- 0. Hence

there exists a P0 (c) > 0 such that

(8.14) iWp.+m( ) - W P CO) " I(Trp(C) - (p + mo)2)1/21 < e

for (p,C) E N(po,o,p,6), 0 < p < po(C), 0 < 6 < 60 (p()) because

TrP ) E D(zo,p) for all such (p,C). The proof that the functions

wp+m() with m # mo are continuous at (po,C) is the same as in Case 1.

To prove the equicontinuity statement of Theorem 4.2 fix

(po,Co) E M. Then for all m E Z (resp., m E Z - {m0 }) Cases 1 or 2

apply to Wp+m(O) and if

(8.15) F(z,p) - (z - (p + m)2)I/2, IM Fm(z,p) > 0

then for all (p, ) E N(poo 0,p,6) one has

(8.16) IWp+m() - VPo m(;o)I - [F(pr (P)p) - FmC1Po( O),Po)I .

Note that F(z,p) has partial derivatives

DZ Fm(Z,p) - (z - (p + M)2)
- 1/ 2

(8.17)

* D Fm(Z,p) - -(z - (p + m)2/2 (p + M).

Hence for z 6 D(z0 ,p) and Ip - Po[ < 6 these derivatives are uniformly

bounded for all m E Z (resp., me Z - fmo})" Now by Taylor's theorem

(8.18) F(z,p) - Fm(zo,po)+(z-Zo) Dz Fm(z',p')+(p-pa) D Fm(Z',p') *

where (z',p') is on the segment from (z 0 ,po) to (z,p). Thus one has

-
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]W~f()- Wpmf(;

(8.19)

< ID. Fm(z',P')J IT (P) - po (;O)J + JDp Fm(z',p')J JP-~Po

< Const. (l7r () - p o(CO)J + !p - pal)

for all (p,C) E N(po, o,p,6) and all mG Z (resp., m E Z - {mo}). Since

Tp(?) and 1PO(CO) = zo are in D(zo,p) for (p, ) E N(po,Co,p,6) it is

clear that there exist po(E) > 0, 6o(c) > 0 such that (8.14) holds for

all (p,;) in N(po,Co,po(e),6 0 (E)) and all mE Z.

Theorem 4.3 was proved in §4. The proof of Theorem 4.4 will be

based on the following

Lemma 8.1. For every compact set K C M and every r' > r there

exists a constant C1 = C(K,r,r') such that for all u 6 U(p,C)EK Fp,,r

one has

(8.20) luI 2  1 < CIuI.2 + IVul ,r).
r r,r' hI (u,,r h

Proof of Lemma 8.1. Note that every u E F can be writtenp,i,r

(8.21) u(X) - u'(X) + u"(X), X C~rv

where

(8.22) u'(X) cm exp x(p + m) + iyw ( )},

(8.23) u"(X) = Z" c. exp (i x(p + m) + iywp~( )} ,

the cm are the coefficients of (4.28) and the notation ' denotes

summation over the index sets {m Im w (P (4) > 0} and {m Im wp+w(;)< 0},

I - ? l - " I . . i - l 1 . . .. II l l~ . .
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respectively. Lemma 4.1 implies that u E Ci( r) and the Fourier series

in (8.22) and its derivatives converge uniformly on compact subsets of

r to u' and its derivatives. Moreover, the sum in (8.23) is finite for

each (p, ) E M. Finally

(8.24) Iu12 - lu' 2, + iu"lir, r' r , r rr

because {ei(p~m)x} is an orthogonal sequence in L2 (rr,) and the index

sets defining ' and E" are complementary.

Parseval's relation for Fourier series implies that

(8.25) f lu'(x,y)[2 dx- 27r V ICm12 exp (-2y Im wp+m( )}
-IT

for all y > r. Moreover, this is a monotone decreasing function of y,

whence

ju(,x,y)12 dx < 2 j V 1cm12 exp (-2r Im wp+m( )}

(8.26) d

27r Z IuM(r)12.

Integrating this inequality over r < y < r' gives I

(8.27) lU'I,r2  < 27r(r' - r) ' Iue(r)12.

The analogue of (8.25) for u" is a monotone increasing function of y > r.

In particular, for r < y < r' one has

(8.28) u(x,y)1 dx < 2iE cm exp {-2r' In wp~m( )} .
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To estimate this sum note that the sets {m Im W.m( ) < 01 vary with

(p, ) E M and the properties of M established in §4 imply that the set

(8.29) M = M(K) - U {m I w P+m( < 0}
(p, )r-K

is finite for each compact K C M. It follows from this and Theorem 4.2

that

(8.30) -i P(K) - Max {-Im wp+m() (P,) E K and m E M(K)}

is finite. Hence (8.28) implies

r Iu"(x,y)12 dx < 21T exp {2(r'-r) } Z" I cm1 2 exp {-2r Im w +M()}

(8.31)

- 21T exp {2(r'-r)} Z" Ium(r) J2

for r < y < r'. Integrating (8.31) over r < y < r' gives

(8.32) Iu"1 2  < 27 (r'-r) exp {2(r'-r)} Z" lU(r)12r ,r' -

Adding (8.27) and (8.32) and using (8.24) gives

(8.33) <U1r, 27r(r'- r) exp {2(r'- r)p} E jU (r)r r' -EZ m

Finally, Parseval's relation in L2 (-7rT) gives

(8.34) Iu(,r)112 = lu(xr)12 dx- 27 I u(r) 2 ,
-T MEZ

whence
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(8.35) |ui 2,r , < (r' -r) exp [2(r' -r)p} lu(',r)|

To complete the proof of (8.20) recall that by Lemma 4.1,

2 9,oc
u E L2 , (oc ) It follows by Sobolev's imbedding theorem [1, p. 32]

that there exists a constant C2 = C2(h,r) such that

lu(,r)02 f C2 (gur + OID U12 r)- ,r y h ,r

(8.36)

< C2(QUt,1, + uIVU12r)

Combining (8.35) and (8.36) gives (8.20).

Proof of Theorem 4.4. It must be shown that there exists a

constant C = C(K,r,r') such that for all (p,C) E K and all u E F

(8.37) IUq2 + IVlu2 + IAUI2 I C2 (1u12  +IVu 2  +jAul 2 , )
, r' 0or' or - o,r o,r or

Clearly it will suffice to show that

(8.38) Iu,12  , + q VUi 2  
,+ 1A'&.1l I < C 2 + I VuI + I ar)

r,r r,r' ,r' - o,r o,r ,r

since (8.37) then follows with C2 + 1 instead of C2 . Moreover, every

u E F satisfies Au = -TT( )u in r . Hence it will suffice to show

that

(8.39) OUR 2  + UV1 < C2 (11u1 2  + iIullI + lIbU 2
r,r' r,r' - o,r o,r o ,r

since (8.38) then follows with C2 Max {1T ( ) I + 1 : (p,) E K} instead

of C2.

To prove (8.39) note that the Fourier series argument used in

the proof of Lemma 8.1 implies that (cf. (8.35))

*1'
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itI
(8.40) < < (r'-r) exp {2(r'-r)j} IVu(',r)l2

( 0r,r -

Moreover, if r" - .(h + r) then h < r" < r and Sobolev's imbeddingI2
theorem implies that there exists a constant C3 - C3(h,r) such that

(8.41) IVu(.,r)12 < C3 Uu2;

where 1' ,, is the norm for L ( r,,,). Finally, the interior

2;r ,r r ,r

elliptic estimates of [1], applied to v(x,y) - exp {-ipx} u(x,y) and

Lpv = Av + 2ip Dxv - p2v in Yr 1 imply that there exists a constant

C= C 4(h,r,r') such that

(8.42) Iu1
2  C4 (IUI 2 r '+ IAUI 22;r",r h h,r' h+ ~l,r')

Moreover, since Au = -n( )u in 0 ,

IUI2 , + IAU2r IU12 + Nut 2  ,+ ItAUg 2  + JT (;)12 IU12
,r rr hr p rr

(8.43)

< Auh ,r + Uih, r + Cs(K) r,rI

where CS(K) - Max {n p( )2 (p, ) E K. Combining (8.20), (8.40),

(8.41), (8.42) and (8.43) gives

(8.44) Hui2  ,+Vu 2  < C(lut2 +C"u( 2 +Ulu2 2 +)+C u2 2

r,r r,r' - h,r h,r h,r 7  r,r'

where C6 - Max (C1,(r'-r) exp {2(r'-r) j.(K)} C3 C) and

C7  (r'-r) exp {2(r'-r)ji(K)} C3 C 4 Cs . Finally, combining (8.20) and

(8.44) gives (8.39) with C2 - Max (C6,C1 C7).

It is worth remarking that an indirect (non-constructive) proof

of Theorem 4.4 can be given by a compactness argument; see [34, Lemma

4.6] and Alber [3, Lemma 5.3]..41
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The Sesquilinear Form Aptr in Lz(So1r). Kato's first

representation theorem [17, p. 322] associates a unique m-sectorial

operator in L2 (Q,) with each densely defined, closed, sectorialo,r

sesquilinear form in L2(0 ,r). Theorem 4.5 will be proved by construct-

ing such a form A in L2(,r) and showing that A is thep , Cr 2(,r p,C,r

associated m-sectorial operator. To motivate the definition of A

note that if v E D(A, ) then application of Green's theorem gives

(8.45) (v,A V) IVv 2l - f v D v dx.p ,,rr -j y yr

The formal correctness of this equation is obvious. A rigorous proof

based on the definition of A °c is given below; see (8.115). Now

p

v = Pp, ,r u where u E Fp, ,r and u and v have Fourier expansions (4.7)

for h < y < - and h < y < r, respectively. Moreover, Lemma 4.1 and the

Sobolev theorems [1] imply that uE C1 [h,-), vE C1 [h,r], u m(y) - vM(y)

for h < y < r and

(8.46) urn(y) - cm exp {iywp+m(C)}, y > r.

Application of Parseval's formula to the integral in (8.45) gives the

alternative representation

(8.47) (v,Ap, o,r - IVv 2 r - 2iri I w Jm(r)12.
I 0 MEZ

The right-hand side of (8.47) will be used to define the form

A p,, r . Two cases, corresponding to the Dirichlet and Neumann boundary

conditions respectively, must be distinguished. To this end define

......~ -
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G D

(8.48)

Lz DP°c (0) ){u 1 supp (A+ 7r())u C So,r' (4.28) holds in L' z ocr(9

GN
p,1,r

(8.49)

- L OC 'r) ( { u I supp (A+ r())u C 9 (4.28) holds in LZl Lc(61r)1.

The condensed notation G will be used to denote ,r or GNP, , p ,Cr p , ;,r i

statements that hold for both. It is easy to verify that Gp,C,r is a

Frechet subspace of L2 (Q). The notation 0, G,r * L2 ()

will be used for the natural projection defined by

(8.50) Qp,rC,ru = uS fo,r p , ;,r'

The sesquilinear form A (- AD or AN,) and
p , ,r pC,r ,;r

corresponding quadratic form are defined by

Q (8.51) D(Ap, ,r) - pC,r Gp,;,r C L2( or),

(8.52) A p,,r(vv') - (Vv,Vv')0,r - 2ri E w p+M() vm(r) v'(r)
MEZ

for all v,v' e D(A an), ad

(8.53) A (v) -A (v,v), v E D(A

and one has



14

Theorem 8.2. A is a densely defined, sectorial, closed

sesquilinear form in L2 ( 0 , r
)

The proof of this result requires a number of estimates which

will be developed in a series of le-mas. The first lemma shows that

(8.52) does indeed define a sesquilinear form on L2 (Q ,r).

Lemma 8.3. For all vv' : D(A p,,r) the series in (8.52)

converges absolutely.

Proof of Lemma 8.3. It follows from Schwarz's inequality that

it will suffice to prove that

(8.54) 1 w P. ( ) Iv,(r) 12

MEZ

converges absolutely when v E D(A ) and

(8.55) vm(r) - 1 f' e -i( +m) x v(xr) dx.

To this end write v = QprU where u C Gpr and decompose u into

(8.56) u(X) = u'(X) + u"(X), x E Q

as in the proof of Lemma 8.1.

Consider first the component u'. Parseval's relation implies

that

J. Iu'(x,y)12 dx - 27 ZV I cm exp {-2y Im wp.+m()}
-7r

(8.57)

,Iv, (x,y)Idx -2 'IcmI(Ip'I + Iw.()I) exp {-2y ImWp.h)}1 
1 1,
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for all y > r. Moreover, these are monotone decreasing functions of y

that tend to zero exponentially at -. Hence u' E L1(r

Next let nn' 6 Z satisfy n < n' and defineI
no,

(8.58) u', c exp fi x(p+m) + i yw+m(w

n

where I denotes sumation over the index set {m I Im wp4,(C) > 0 and
n

n < a < n}. Applying Green's theorem to unI and Usn, in Qrr , gives

(8.59) r({U' AI,n' + Moou  
12,n'
2
} X l -, DV Un,n, ds

whence, using the Helmholtz equation and p-periodic boundary condition

for u'n, one has

(8.60) n , r - () Iu' 1,2 N J u
(Vu' r,r' n,n r,r' -7 n,n' Dy Un,n,]r

Making r' - and writing 11 Ir  . gives

IVunn12 - I U' 2 f 'l Dy u' rdx! r n n I  r _-InT n n,n ' ym

(8.61)

- -2iri wp~( ) lu(r) 12
n

where v (r) = u (r) = cm exp {ir wp4m( )}. In particular, taking the
m Ip' ,2-eT()I',2

real part of (8.61) gives

ni
(8.62) 27r i= W [v,(r) V2 - R,n; r U o2,nr

"n p nnor no r

e M

' S l i l l i
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Hence the convergence of the Fourier series for u' in L'( r) implies that

(8.63) V Im wp(C) Jvm(r)j2 <

The convergence is absolute because all the terms are non-negative.

Now consider the set

(8.64) {-i wpmw () I m Wp+m() > 0}.

Each member of the set satisfies

(8.65) larg (-i wpfi() < ir/2

Moreover, elements of the set (8.64) satisfy

(8.66) wp( )-i IPpft, Imi -9 00,

whence

(8.67) arg (-i wpm(Q)) - 0 when Iml 4 0.

It follows that

(8.68) e -Max {larg (-i wp+mW())I :mw )p+m > 0} < w/2.

Hence if Im wp+m() > 0 then

(8.69) IRe wp. (0;)l Ivm(r)12 < tan 8 Im wv ( ) 1V(r)12
p4~m m

and (8.63) implies that

(8.70) f lRew Pm(C)l Iv(r)I2 < .

(8.63), (8.70) and the finiteness of the sum defining u" imply the

absolute convergence of the series (8.54).

A ' -.. ... ....I I ... . .I I l 1 1 1 I I. ...... .... . ...
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Lemma 8.4. For each compact K C M and each r > h there exists an

a = a(K,r) such that for all v e U(p,) D(A ) one has

Iv 2  + av1 2
0

(8.71) 127r Z" ,m() 1v(r)12 1 I Vv or a vr"

Proof of Lemma 8.4. Schwarz's inequality and the definition

(8.55) imply that 21 lvm(r)2 < 'v(',r)'12 (_.,W). Since v4E L,(Q0r) it

follows by Sobolev's imbedding theorem (1] that there exists a constant

CO = C0(r) such that for all e > 1 one has

(8.72) 2w Jvm(r) 12 < C0  -(IVvl 2  +c 2 Iv2r)
Cce Or + F

Next, note that if M(K) is the index set defined by (8.29) then

M(K) is finite and hence

(8.73) C1 - C,(K) - Max {l.~( )l : (p,C) E K and m EM(K)1

is finite for every compact K C M. Combining (8.72) and (8.73) gives

127 " w.m(> Ivm(r) < 2 C Z" C v (r)12

(8.74)

<2w C Ivm(r) I2

km

SCO 1 M E- (IVvI2 + 21v12r)

-2 0r 0r

provided that e m £(K,r) > 1 is chosen such that C0 C1 M- E < 1/2 and

a - a(K,r) satisfies a _ CO C1 M C.

Corollary 8.5. The sesquilinear form Apr is sectorial for

all (p,e) M M. In fact, for each compact K C M there exist constants
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y - y(K) E R and 0 (K) < 7r/2 such that for all (p,e) 6K and all

v E D(A with v| -1 one has
O,r

(8.75) Ap,,r (v) ( {zE C : jarg (z - y)I 1 8}.

Proof of Corollary 8.5. The proof generalizes one of Alber

[3, Lemma 6.3]. Let (p,4) r K, v E D(Ap ), Ivi r - 1 and write

A (v) -I + 12 where

(8.76) I a IVvI 2  - 27ri Z" w ( ) Ivm(r) 12

Or pm

and

(8.77) 12 - -27i V wp+m() Ivm(r)12 .

Then by Lemma 8.4 one has

1 2 +a(8.78) lIm IIj I - IVvI a,r

Similarly, the real part of 11 satisfies

(8.79) Re I > IVvI2  IVvI2  IVI2

(8.79)- o,r 2 o,r o,r  a

Combining (8.78) and (8.79) gives JIm Ij < Re I, + 2a whence

(8.80) I1 : {z 6 C : jarg (z + 2a)J < w/4.

Next, recall that larg 121 < 9 < n/2 where 6 - e(p,4) is defined by

(8.68). In fact, it is elementary to show chat the limit relations

(8.66), (8.67) hold uniformly for (p,C) e K and hence there exists a

e - 81(K) < v/2 such that larg 121 . el for all (p,C) C K. Combining

this estimate with (8.80) gives (8.75) with y - -2a and 8 - Max (n/4,81).

-- - - - -
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The proof that the form A is closed is based on thep,,

following generalization of an estimate of Alber [3, p. 269].

Theorem 8.6. For each (p, ) e M and each r' > r > h there

exists a constant C - C(p,;,r,r') such that for all v-%qp,4,ru with

u e Gp,;,r one has (see (4.30), (4.31) for notation)

(8.81) IU12 I < C(JA (V)I + Iv12 r)
(8.81)lul r;0r' o

The proof of Theorem 8.6 will be based on a number of related

estimates which will be developed in a series of subsidiary lemmas.

The first is

Lemma 8.7. Under the hypotheses of Theorem 8.6 one has

(8.82) IVu () lui 2 - -2Tri ' vp~(+) wum(r)l 2

where u' by (8.22) and u,(y) - cm exp {iywp+m(C)}.

Proof of Lemma 8.7. The finiteness of the norms in (8.82) has

already been noted; see (8.57). Passage to the limit n * - , n' " in

(8.61) gives (8.82).

Lemma 8.8. Under the hypotheses of Theorem 8.6 there exists a

constant C1 - C1 (p,C,rr') such that for all u E G one has

(8.83) IU12rI < C1 lu(.,r)l 2 .

Proof of Lemma 8.8. (8.83) follows from the proof of Lemma 8.1,

inequality (8.35).

Lemma 8.9. Under the hypotheses of Theorem 8.6 there exists a

constant C2 - C2(p, ,r,r') such that for all u r G one has

(8.84) IVu"l 2 2 < C2 lu(.,r)l 2
r ,r - "
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The proof of Lemma 8.9, starting from (8.57), is exactly like

that of Lemma 8.8 and is therefore omitted.

Lemma 8.10. Under the hypotheses of Theorem 8.6 there exists a

constant C3 - C3(p,;,r,r') such that for all u e Gp, ,r one has

(8.85) V' w.(;) ju(r)12I < C, u(-,r)12 .

Proof of Lemma 8.10. One may take

C3 - Max { w+M(C)l : Im wP+M(C) < 0} and use (8.34).

Lemma 8.11. Under the hypotheses of Theorem 8.6 there exists a

constant C4 - C4(p,;,r,r') such that one has

(8.86) Iu'1 2 < C4 lu(',r)U
2.

r

Proof of Lemma 8.11. Integration of (8.57) over r < y < = gives

(8.87) ru'lr - 27 I C 12 exp {-2r Im w,.n(4)}/2 Im wp+m(C)

which with (8.34) implies (8.86) with C4 (p,;,r,r') defined by

C;' - Min [2 Im WF,.(t) w Im Wp.m( ) > 01. This minimum is positive

because Im W ( ) p + mi, Iml - = (see (8.66)).

Lemma 8.12. Under the hypotheses of Theorem 8.6 to each a > 0

there corresponds a constant 8 ea (h,r) such that for all u E Gp.r

one has

(8.88) lu(',r)1 2 < a IVu1 2  + 8 Iu1 2

o,r a O,r

Proof of Lemma 8.12. Recall that u r C'(Slr) and hence

um(y) E C (r,-). Hence, by a Sobolev inequality there is a constant

y - y(h,r) such that for all E > 1 one has (1]

.4i
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(8.89) IurM(r)[2 < 7 ( [Um(Y)12 dy + 2 JUm(Y) 12 dy)

Moreover, by Parseval's relation,

r7
(8.90) Iu(-,y)1 2 = f u(x,y)12 dx = 2w U Um(Y)1 2 , y > h,

-7r MEZ

whence

(8.91) IulI = 21 , f' lue(Y)12 dy,h,i nz

(8.92) IDyhI U r 2w I fr IDy um(y)12 dy.
y hr MIEZ h

Combining (8.89) - (8.92) gives the estimate

Au(',r)1 2 < y J-(ID U1r + E2 IU12r)
~y h, rh ,r

(8.93)

l(IVuI2 + e 2 lu1
2  )

0 - ,r o,r

Choosing y(h,r) - l = a, y(h,r)c = y2(h,r)/a - 8 (h,r) in (8.93) gives

(8.88).

Proof of Theorem 8.6. The definition (8.52), (8.53) implies that

for all v Q p,C,ru 6 D(A p,,r)

(8.94) A (V) _ IVvI 2  - 27ri I wpn(C) Iu(r)12.pr0 ,r ME*p~l M

4 Combining this with Lemma 8.7 gives the representation

7'
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Z"w ()(r j

(8.95) Ap (V) IVv 2 , + IVu'2 - I(;) Iu'1 2 - 2wi )p+m. mur(r)
por0r r r

whence

IVvI 2  + IVu'1 2  < IVvI 2  + IVu,1 2

O,r r,r' - O,r r

(8.96)

Re {Ap,,r(v) + r()lu'l r + 27ri "wP+m (C) u (r)

< I, (v)l + j7( )1 IU, + 27r IZ"wp.+.MC) Ium(r) 121

It follows that

U12  IVvI2  + IVu'1 2  , + IVu"1 2  , + Iv12  + lug 2

io,r' ,r r,r r,r0 ,r r,r

(8.97)

I ,~r(V)l + IT(C) IUIr + 21r I" w (C) lum(r) 121

+ IVu"1 2  , + 1u 2  , + Iv1 2

r r r r O,r

Combining (8.97) and the estimates of Lemmas 8.8 - 8.11 gives

(8.98) IUIlz  < rA (v)I + C Iu(-,r)12 + Iv12

l;o,rl - C~r o,r

where

(8.99) C5 - C,(p, ,r,r') - C1 + C2 + 27 C3 + IT( )1 C4 .

On combining (8.98) and (8.88), and recalling that u v in Q0 one

finds

(8.100) lu12 < IA mr(v) + (Csa)IVvI2 + (Cs  + l)IVlor(810 1;o,rl - p ,r , Or aor
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where a > 0 is arbitrary. Defining a by C5a 1/2 and C C(p, ,r,r')

- 2(Cs a + 1) gives

(8.101) 1 uI < iL C(Apr(V)I + jV2 ) + U LVV 2I;o,r' 2 C Ip.,r 0 , r 0,r

since Csact + 1 > 1. Finally, (8.101) implies (8.81) because
IOVv ,r < RUB 1;0,r,.

Proof of Theorem 8.2. The denseness of D(A, ) in L2
p ,C~r 2 ,r

follows from the obvious inclusion CwG( ) C 0 C(Q C D(A00,r 'p,C, r 0 O,r ,

The sectorial property of A was proved as Corollary 8.5 above.

To prove that A is closed let v (n) u(n) with u E Gp, , = p, r 'p,t ,r'

be Ap,,r -convergent to v E L2(Q ,r); i.e., v(n) - v in L2(Y ,r) and

A p,,r(V(n ) - v(m)) - 0 when n,m - =. It must be shown that v = Q p,,r u

where u e G and A v,r(V - v (n ) 0 when n - [17, p. 313]. Now

Theorem 8.6 applied to v(n) - v(m) = Qp,,r(u (n) - U(m)) implies that

{u(n)} is a Cauchy sequence in G and hence lim u(n) , u E G
p, ,rGp, ,r

exists. Clearly v = Qp,Cru since Qp.,,r is bounded. Moreover, the
convergence of {u(n)} to u in G implies that UVv - v(n)1  0

when n + =. Hence, the representation (8.94) of Ap,(,r(v) implies that

to complete the proof of Theorem 6.2 it will be enough to show that

(8.102) lim I w p+m () jum(r) - u ( (r)j = 0.
n- mEZ ur

Now Lemma 8.3 and the relation (8.60), applied to the partial sums of

the Fourier series of u E G in Sr,1 imply that
prr
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mEZ p+m m(r)1
2

(8.103)

(u(,r') ,Du(,r?)) + f(T)UuH2 , IVuj2
y 2 -ri)r,r' ,r

It follows that (8.102) holds if

(8.104) lim (u(,r' - u(n) ',r)Du('ri) - D u(n) (',r'))L (_ , 0.
n-Y

To prove this define s 1/2 (r+r'), s' = r + r' so that r < s < r' < s'.

Then a Sobolev imbedding theorem [i] implies that

l~u-,r), y (-r'))l < Uu(',r')l lDyU(', r')l

(8.105)

< But ;s, r ,  out 2;s,r'

< hu# 2

- 2;s,r' •

Moreover, the interior elliptic estimates of [i imply that there exists

a C - C(r,r') such that (see (8.42))

(8.106) out 2  < C(lU 2  , + [Au1 2  I.

;s,r- r,s r,s )

Since Au = -C()u in 0r' (8.105) and (8.106) imply

(8.107) l(u(',r'),D u(',r'))l < C' Oul 2

y r,s'

where C' - C'(p,1,r,r'). Applying (8.107) to u - un) gives (8.104).

This completes the proof of Theorem 8.2. Note that the proof actually

impl ies
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Corollary 8.13. Qp, r is a topological isomorphism of the

Freichet space G pCr onto DOAp ,Cr) - pCr Gpq r' topologized by the

norm

(8.108) (JAp (V) I + I,2  ) 1/2

Proof of Theorem 4.5. The densely defined, sectorial, closed

sesquilinear form A is associated with a unique m-sectorial

operator Tp~ in L2(Q2 r by Kato's first representation theorem [17,

p. 322]. Theorem 4.5 will be proved by showing that Ap,~ m T p r

The Inclusion A C T .To prove this let v E D(A )

PpCrF p CCD(A p,,r) and write z -Av -A p ,rv. It will be

shown that

(8.109) A (v',v) -(v',A v) = v,z) ,v (
P , C~r p , ,rv o,r o,r vED(p, r

Note that this implies that v E D(T ),, and T p,~v = z m A P V

whence A C T
p , ,r p,?,r*

Equation (8.109) will be proved by applying the generalized

Dirichlet or Neumann boundary condition to v; i.e., the integral

identities of the definitions (3.19), (3.20) of D(A Yc). To this end

let r' > r and let r ,(y) (= COO(R) be a cut-off function with the

properties

1, (2r + r')/3,

(8.110) r,r ,(y)-j

0,y (r +2r')/3,

and ' (y) < 0 (whence 0 < ~ (y) < 1). Thenr ,r -- r,r
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(8.111) Vr~rl IV' r L D,PScom() or Lp,com(S)
r,r L 2

and

(8.112) V I , v'+ ,v'y
r,r r,r r r'

where 9 is a unit vector in the y-direction. The integral identity of

(3.19) or (3.20), applied to v E D(A X£ c ) and vrr, gives

0- (v ,Av),I + (VVr,,Vv)
r ,r o,r r,r o,r'

(8.113)

(Or,rV',Av)o,r, + (r,r ,Vv',Vv) , + ('' ,v',D v)
r• ~ ~ 0,r r,r yo,r'

Now the last term satisfies

D= ' v'(x,y) DyV(X,y) dxdy
(r,r',D y O,r' 7r,r

(8.114)
Jr I r(Y) v'(x(y) Dyv(x,y)dx dy

r r, r Y f-7T

-I -J v'(x,y) D v(x,y)dx

=-27ri I wp() v'(r) vm(r), r' -r;

MEZ

see [34, p. 57] for a similar calculation. Thus passage to the limit

r' r in (8.113) gives

(8.115) (v',Av)or - 2vi .in(') v(r) vm(r) - 0
+2 Z

.1L
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for all v' e D(A p,,). The definition (8.52) of Ap,C, r implies that

(8.115) is equivalent to (8.109).

The Inclusion Tp,, r C A p,,r. To prove this let v G D(T p, ,)

and TpC,rv - z e L2(Oor). This is equivalent to the identity

(8.116) A (v',v) - (v',z)or

or

(8.117) (Vv',Vv), r - 2lri I wpm(C) v'(r) vm(r) - (v',z)Oeg p m o ,r

for all v' E D(Ap,,r Taking v' E Co(n0r) gives

(8.118) -Av - z in 2O,r

by elementary distribution theory. Thus to complete the proof it is

enough to show that v E D(A p,,). Note that the definitions of F

and G imply

(8.119) Fp,,r G p,,r

Thus it will suffice to show that u - Q v satisfies Au r L °(x?2).
... p,C,rv 2

This will be done by calculating the distribution Au. To this end note

that for all P E Co'(Q) one has

(8.120) (-hP'U)L(a) - (V4'V)L(a)

1 ,Loc Tubecause u E L 2 ° ( 0 ) . Thus

(8.121) (-A'U) (Vi'Vv) + (VU)
L 2(Q)ao,r +(*V)rw

Now equation (8.117) with v' - gives

1-
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(8.122) (,Vv), r - (,z), r + 2ri wp+.( ) m(r) vm(r).

It will be shown that the last term in (8.121) satisfies

(8.123) (V,V lu) - r(C(iu) - 2iri wp+m() ,rm(r) vm(r).

Adding equations (8.122) and (8.123) and using (8.121) gives

(8.124) (-A4,u)L2(S) Z ( Oz)or + r(O)(,,u) - (Cf)L261)

where

(x), x ,r'
(8.125) f(X) -

r (C) u (X) , x E Qr.

Thus -Au f E L2

The proof of Theorem 4.5 will be completed by verifying (8.123).

To this end recall that u e G and Au - -1()u as a distribution inp,C,r

Qr,o. Now define er,r,(y) = 1 - Or,r (y), where 0r,r' is defined as

above, and define

(8.126) r,r r,r 0

Then the distribution definitions of Vu and Au in Q r,o imply

(Wr,r,,u)r, - (-Ar,r, U)r,w ( r,r,-Au)r,o

(8..127)

r,r r, c
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On the other hand, proceeding as in the first part of the proof one finds

(Vi ,,Vu) (8 V'PVu) + (8' 1 ,D U)
r,,r r, co r,r r, + r,r y r,o

(8.128)

W (Vip,VU) + 27rI Wp~z() *m(r) um(r)
mez

when r' * r. Thus passage to the limit r' - r in (8.127) gives (8.123)

because v - % rU satisfies vm(r) - um(r).

Proof of Theorem 4.6. The proof of the continuity of

{A I (p,C) E M} will be based on a criterion established by Kato

(17, Theorem IV-2.29]. Thus for each (po, O) E 9 one must construct a

Hilbert space X, a neighborhood N(p0 ,C0 ) C M, operators U(p, ),

V(p, ) E B('iL2('Or)) for (p, ) E N(p0,,0), and operators

UV E B(CL2("Or) with the properties that U(p,C) and U map X one-to-

one onto D(A p ),r and D(A p 0), respectively,

(8.129) A U(pC) - V(p,C), A U V,

and

(8.130) IU(p, ) - UI 0, IV(p, ) - VI - 0 when (p, ) * (p0 ,ro).

The space X will be defined by

(8.131) 3- D(Ao ) C L(A,).
Po;Or 2 o,r

Theorem 4.4 implies that K is closed in the topology of L(,0r) and

hence is a Hilbert space. Next a neighborhood N(p0 ,C0 ) and linear

operators

(8.132) J(p,;,po, o) 6 B(K,L'(A,ao0 )) (p,;) e N(Po,;o),

2 I
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will be constructed with the properties

(8.133) J(pqp 0 , o) maps X one-to-one onto D(A

(8.134) J(po,CO,poC o) E is the natural embedding of

Rin L2 0r

(8.135) (p, ) - J(p,C,po,to) e B(C,L1 (A,ior)) is continuous

at (po,4o).

The desired operators can then be defined by

(8.136) U(p, ) - Eo J(p, ,poqo), U - U(PoCo),

(8.137) V(p,C) - Ap,C, r U(p,), V - Vpo, o),

where Eo : LI(A, 0 r) - L2(o ) is the natural embedding. It is clear

2 O~r 20o,r

that these operators are in B(K,L2 (o,r )) and U(p,C), U map K one-to-one

onto D(A ), D(A, ), respectively. Equations (8.129) hold by
p , C~r p0,C0,r

definition. Moreover,

IU(p, ) - U1 = IEo(J(p,,po, O) - J(p 0 , 0 ,1 0 ))I

(8.138)

< IJ(p, ,po, o) - El - 0

when (p, ) * (po,;o) by (8.134), (8.135). Similarly, for all u E K,

I(V(p,1) - V)uIor IAJ(P';'po'o)U -AJ(Po'Co'Po'Co
) u 1o , r

(8.139)

< IJ(p,;,p,,;)u - EuliI;or

< IJ(p,l,pop o ) - El lulK

.4
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whence

(8.140) Iv(p,) - VI < IJ(p, ;,po,CO) - El 0

when (p,) (po,r 0). The proof of Theorem 4.6 will be completed by

constructing the family J(p,C,p0 , 0 ). The cases of the Dirichlet and

Neumann boundary conditions will be treated separately.

Construction of J - The Dirichlet Case. The construction

generalizes one of Alber [3]. To describe it let v E X - D(A

i.e., v - Ppu, u e F p,,0,r  The Fourier expansions of v and u have

the forms

(8.141) v(x,y) = I vm(y) exp {i(p. + m)x}, (x,y) e "h,r ,
MEZ

(8.142) u(x,y) = I un(y) exp {i(p 0 + m)x}, (x,y) e ","
mEZ

Moreover, vm(y) - um(y) for h < y <r and

(8.143) u (y) - Cm exp {iyw 0n(0)} for y > r.

Next introduce a function E C (R) such that

(8.144) 
1 for < y r, - (r + 2h)/3,

0 for r2 - (2r + h)/3 < y < c

and '(y) < 0 (whence 0 < &(y) 1 1), and define, for each y e R,

(8.145) dm(p,C,p 0,z,y)- exp fty [wp+.(C) - wpo+m(Co) (y) + (y).
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Choice of N(po,Co). The equicontinuity of the functions Wp+M(C),

Theorem 4.2, implies that there exists a neighborhood N(p0 ,?0) c M such

that

(8.146) lexp {iy [Wp+m() - Wpo+m(O)]} - ii < 1/2

for all (p,C) C N(p0,;0), mE Z and y E R. Thus, using i1 1- IZ211

< 1zI - Z21 one has

Ildm(P, ,poCoqy)j - 1i f [d,(p,;,po,Co,y) - 1i

(8.147)

_f lexp {iy [w P+m( WVpo+M ( O)]- l -  (y) I < 1/2

and hence

(8.148) 1/2 < Idm (Pp0,o,y)j < 3/2

for all (p,;) E N(p0, 0), m e Z and y E R.

Definition. For all v E X - D(Apq,) with expansion (8.141)

on Qr let

J(P, ,Ppo' 0)v (x 'y )

(8.149) J dm(PqC'P°''Y) vm(Y) exp (i(p 0 +m)x} in

- exp {i(p-po)x}

v(x,y) in S 0 ,h"

Note that dm(P,;,p0,;oy) S 1 and hence J(ppP0, 0 ) v(x,y)

- exp {i(p-p0 )x} v(x,y) for (x,y) E 
2 ,r*. Thus the definition produces

no discontinuities at y - h. The proof that J has the properties (8.132)

- (8.135) will be developed in several lemmas.

I B
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Lemma 8.14. There exists a constant M - M(N(po,Co)) such that

(8.150) ID k d (p,;,pO,¢,y) I < M
y m

for all (p,C) E N(po,Co), m 6 Z, y e R and k - 0,1,2.

This result follows easily from the definition (8.145) and the

equicontinuity of the family {wp+M ()}.

Lemma 8.15. J satisfies (8.132); i.e., for all v E D(A po,49r)

one has J(p,;,po, o)v E LI(AQor) and there exists a C - C(Po,;o)

such that

(8.151) IJ(P,,Po,o)vIl ,A;o,r C lv,A;o,r

for all v E D(Apo,;o,r) and all (p, ) E N(Po, o).

Proof of Lemma 8.15. For all v E D(A, ) one has

lvi12 " {IV + JvVl2 + JAVI21 dX

(8.152) 0 ,r

_ Iv12  + Iv12

I, A;o,h 1,A;h,r

- IV; 2  + 27r I I°(y) dy1, A;o,h Zf
•mEZ h

where

(8.153) IO(y) - (1+ Mpo4512) Iv12 + IDyvm 1 + IDye-po+M)2V 12

Similarly, writing

(8.154) J vm(y) - dm(p,;,po,;o,y) vm(y),
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one has

IJ(pCpOO)V, 2  o = lexp {i(p-p0)-VIV2 + 2  Z Ira(y) dy
IA;o,r 1,A;o,h m

(8.155)

where

(8.156) 1 (y) - (1+ IpmI 2 )IJvm1 2 + IDyJv 12 + ID2Jvm - (p+M) 2Jvm2.
y m ymm

Now a simple calculation gives the estimate

(8.157) lexp {i(p-pO)-}v11,A;oh - C' 'VI i,A;o,h

where C1 - C1 (N(po,Co)). Similarly, Lemma 8.14 implies that there is a

constant C2 - C2 (N(po,Co)) such that

(8.158) 1 < C2 I0 (y)
m 2 M

for all (p,;) E N(p0, 0), m E Z and h < y < -. It follows that
J(p,4,p0,;o)v E L'(A,0,) and (8.151) holds with C2 - Max (C1,2wC2 ).

2 O,r 2C)

Lemma 8.16. For all v E D(A, ) one has

(8.159) J(pq,poCo)v E D(ApC,r).

Proof of Lemma 8.16. Since D(Ap,,) - Pp,;,r Fp, ,r it must be

shown that - J(p, ,p0 , 0)v has a continuation a to 0 which is in

Fp, ,r. Recall that for h < y r one has um(y) - Vm(Y) and hence

(8.160) v(x,y) - q d(PqpoPoy) Um(y) exp {i(p+m)x}
mEZ

where um(y) is defined by (8.142), (8.143). Moreover, for h < r. < y < r

one has
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(8.161) dm (pCPOvp0,y) = exp {iy [Wp~n()-Wpo+m( o)]}

and hence it is natural to define the continuation of Z by (8.142),

(8.143) and

(8.162) i(x,y) = cm exp {ix (p-+m) + iywp+m ()}, y > r.
mez

It is clear from the convergence of (8.142) in L2'9°C(Q) (Lemma 4.1) and2

Lemma 8.14 that (8.162) converges in L29Zc(20) and hence a E L2' (AIS).

Also, the po-periodic boundary condition satisfied by v, together with

(8.149) and (8.162), imply that ; satisfies the p-periodic boundary

condition. Moreover, u(x,y) - exp {i(p-p0 )x} u(x,y) in f0,h and hence

satisfies the generalized Dirichlet condition (i.e., a E L2 P 01c( ))

because u E L z  . The preceding shows that a C D(AD ,oc
2 p

Finally the expansion (8.162) has the form (4.28) corresponding to

(p, ) G M and hence a E Fp,; ,r"

Lemma 8.17. J(p, ,p0 , O) maps D(A poCor) one-to-one onto

D(Ap,,r

Proof of Lemma 8.17. Lemma 8.16 implies that J(p,C,p0 ,O) maps

D(A, ) into D(A, ). Moreover, it is clear from (8.149) and

(8.141) that J(p,C,po, o) is injective. The surjectivity may be verified

by constructing the inverse. To do this let v - P p ru E D(A p,r) and

(8.163) v(x,y) vm(y) exp {i(p+m)x} in a,r
meZ

and define



36

dZ dm(P' '~P°''Y)- 1Vm(Y) exp {i(p+m)x} in Sr,
v0 (x,y)= exp {i(p 0-p)x}

(8.164) v(x,y) in Qo ,h"

Note that Idm(PCpoCojy)-'j < 2 for all (p,C) E N(po,Co), m E Z and

y E R. Hence the technique used to prove Lemma 8.16 can be used to show

that vo E D(Apo ,r ) and J(p, ,po,Co)v 0 = v.

Property (8.134) is obvious from definition (8.149) because

d (po,o,po, o,y) 1 1. Hence the verification of properties (8.132) -

(8.135) of J may be completed by proving

Lemma 8.18. (p,C) - J(p, ,p 1o ) E B(JC,L(Ao,r) is

continuous at (Po, o)"

Proof of Lemma 8.18. It must be shown that IJ(p, ,po,4 0)-El 0

when (p, ) - (po, 0 ). An equivalent condition is

(8.165) IJ(p,C,po, o)v - Evj i,A;o,r - 0 when (p, ) -

uniformly for all v E IC such that lv ,;o,r 1 17, p. 150]. To

verify (8.165) define a bounded operator T in LCA, by
p-p0  2 r

(8.166) T v(x,y) - exp {i(p-po)x} v(x,y).

Then for all v E JC one has

IJ(p,C,polo)v - EvI

i1, A;a, r

(8.167)

< IJ(p,i,po,CO)v - pVi,,A;o, r + IT ppov - EvI ,A;O, r .

p- 0 iAor p- 0 1A0r
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Moreover one has, by (8.149) and (8.166),

J(pjp 0 ,%) v(x~y) -T Pov (x,y)

(8.168)(
I {d - 11C~~CO v m(y) exp {i(p~m)x} inQhr

mEZ

0 ini o,h'

whence

(8.169) iJ(p,C,p0,rC0)v - T ~VI '~o 27 r I1(y) dy
nmZ h

where

II(y) =(1 + 'p~m'''Im vmI 2 + j(D fm)vm + fm D~ vmV

(8.170)

+ fDV + 2 D f D v + CD f )V (f)fV1
my m y m y m y m m m

and

(8.171) f= fmp~pOy = d - 1.POC0y

Now using the equicontinuity of the family {wp+,(C)} and Lemma 8.14 it

is not difficult to show that for each C > 0 there is a neighborhood

N'(p., .) of (p0, 0 ) in M such that

(8.172) 0 < I1(y) < C2e Oy

for all (p,C) E N'(p0,10), m E Z and h -< y <r, where 10(y) is defined

by (8.153). It follows that (see (8.152))
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(8.173) WiJ(pvcpo, o)v - v < lvi<

p-pO 1,A;o,r - ,A;O,r

for all v E such that vi A < 1.
F1,6;0,r -

Similarly, an elementary calculation gives

(8.174) IT v- Ev ,A;o,r-

for all v E X such that vii,A;o,< 1. Combining (8.167), (8.173) and

(8.174) gives (8.165).

Construction of J - The Neumann Case. The mapping J defined by

(8.149) is not applicable to the Neumann case because the operation

v exp {i(p - P0)X}V does not preserve the Neumann boundary condition.

It will be shown that for grating domains G E S a suitable mapping J can

be defined by replacing the multiplier exp {i(p - p0 )x} by a function of

the form exp (i(p - p0) 4(x,y)}. To this end note that if x0 has

property (1.9) of the definition of the class S then so do the points

x 0 + 2Irm, m E Z. Moreover, it can be assumed that x0 = -Tr since

equivalent domains are obtained by translating G parallel to the x-axis.

This assumption is made in the remainder of this section. Also, to

simplify the notation it will be assumed that

(8.175) 3G r) {(-,y) I y E R} = (-w,y 0 )

is a single point. The general case defined by (1.9) can be treated by

the same methnd.

Property S implies that near (-n,y0) the boundary r has a

representation (x,y) = (f1 (s),f 2 (s)), where s is the arc length on r

measured from (-n,y0), and f. 8 C3. The vectors t a(fnd,f a
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n- (-f (s),f,(s)) are unit tangent and normal vectors to r, respectively.

The mapping (s,t) - (x,y) defined by

x- f1(s) - t fl(s),

(8.176)

y M f 2 (s) + t f'(s),

has Jacobian 1 at (s,t) = (0,0). Hence the inverse mapping

s - G(xy),

(8.177)

t = T(xy),

exists in a neighborhood of (-Tr,y 0 ) and defines there a coordinate system

2of class C . The system is valid in a domain 0 = {(s,t) : Isl < 61,

Iti < 62}. It will be assumed that 61, 62 are chosen so small that

0 C {(x,y) Ix + iTi < 1i}. If extensions of a(x,y), T(x,y) to

0 + (2Trm,0) are defined by O(x + 2nm,y) = a(x,y) and T(x + 27i,y) = T(x,y)

then the extended functions define coordinate systems in 0 + (2wm,0).

Introduce functions E C(R) (j = 1,2) such that E.(-) -

< 0 for a > 0 and

J I l, Ic[ < 61/3,

(8.178) 7(a) =

(whence 0 < %(a) < 1). The composite functions Ej(a(x,y)) and

E 2 (r(x,y)) are then in class C2 . Similarly, introduce a function E 3(x)

such that
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(8.179) E3 (X) {1 Ixi 633

0,263/3 < Ix + 7< 3

and

(8.180) ~ 3(X + 27T) -E3W

where 63 < iT. Finally define

O(X,y) - (C-7T) El(G) E2(T) + X E3(X)(1 - E2 Qr)], -iT < X 0,

(8.181)

(dX, Y) -(01-T) (CF) 2 () + X E 3(W)11 - E 2 ()] 0 <X < 7i

The two parts of the definition are consistent because both give zero in

a neighborhood of the y-axis. It will also be assumed that 62 is So

small that 1(o(±7n,y)) =1 on the support of 2(r(±nly)).

The mapping J defined by (8.149) with exp {i(p - po)x} replaced

by exp {i(p - Pa) O(x,y)} has the required properties (8.132) - (8.135).

The proofs are the same as in the Dirichlet case except for the verifi-

cation that v' -J(p,?,p, )v satisfies the Neumann and p-periodic

boundary conditions. To verify the Neumann condition note that on the

portion of r in the neighborhood defined by

supp 0 r) {(x,y) J T(x,y)f < 62/3} one has

(8.182) O(x,Y) - (a~x,y) ± t) 0 (a(x'y))-

Moreover, on the regular portion of r a simple calculation based on

(8.176) gives
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whence

(8.184) D a - (-f'(a))a + (fCf)) M0

V2 (a)x-0

It follows from (8.182) and (8.184) that v'(x,y) (- exp {i(p-p0 > O(x,y) }v(x,y)

on Q)satisfies

(8.185) D '- exp {i(p-po)01(D v + i(p-po)Dv 0) - 0

on supp n) r. On the remainder of r v' - v satisfies the generalized

Neumann condition. The validity of the generalized Neumann condition

for v' follows by a partition of unity argument.

To verify that v' satisfies the p-periodic boundary condition

note that (8.181) and the assumption that &i(a(±iT,y)) - 1 on the support

Of &2(T(±1r,y)) imply

cO(Tr,y) - (Ca(?r,y) + 7r) &2.(-(Tr,y)) + rr(l - &2C((r,y)))

(8.186)

- (a(-IT,y) + T) 2 (T(-iT,y)) + 7(~l - &((WY)

= 4(-ir,y) + 2ir & (T(-7r,y)) + 27T(l - &((WY)

- (-Tr, y) + 2IT

and similarly

(8.187) D x (T,y) -D x 0(-r, y)

Thus
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v'(Tr,y) = exp {i(p - pa) O(Tr,y)} v(Tr,y)
(8.188)

- exp {i(p-po) 0(-T,y) + i(p-po)2Tr + 27rip o} v(-ir,y)

= exp {21Tip} v'(-7t,y)

and similarly

(8.189) Dx v'(x,y) = exp {i(p-po)4} (Dxv + i(p-po)(D x)v)

whence

D v'(T,y) exp fi(p-p0) (-7r,y) + i(p-p0 )2n + 27rip 0} x

(8.190)

x {Dx v(-w,y) + i(p-p0 ) Dx p(-7T,y) v(-,r,y)}

exp f27rip} Dx v' (-Tr,y)

The above discussion completes the proof of the continuity of the

family {Ap, , r : (p,C) e M}. The final assertion of Theorem 4.6 states

that for fixed p E (-1/2,1/2] the family {A p,,r: E M p} is holomorphic

in the generalized sense of Kato [17, p. 366]. This may be proved by

means of the family of operators J p (C,i0) - J(p,,p,i0). It is only

necessary to verify that C - J p(C,C0) is holomorphic on M P. A proof has

been given by Alber (3, p. 271].

Proof of Theorem 4.7. D(Ap ) Ppr F, is a closed

subspace of the Hilbert space L-(A, , by Theorem 4.4. A - z
2 O,r p, ,

defines a bounded operator from this space into L2( O,r). Thus the

operator T L2(lr) D(A p,,r) defined by Tf - R(Ap,z,rZ)f for all

f E Lz(QO,r) is closed and defined on all of L2(Or). Thus T is

bounded by the closed graph theorem.

4i
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Next note that R(Apz) = ET where E D(Ap ) IL(

is the natural embedding. Hence, the compactness of the resolvent of

A follows from the compactness of E. Now, in the Neumann case
F , L1,,ro
Fp,, C L PP°C(Q) and hence the compactness of E follows from the

hypothesis G 6 LC. In the Dirichlet case, F C L DP ' °c
p,1,r 2' a

= closure of CO(Q) in L 2 '£°c(f). The last set can be regarded as a
p2

subset of Ll'P' Oc for which the natural embedding into L°c(B0) has

the local compactness property. Hence, in this case E is compact without

local restrictions on r - aG f) f. This proves the compactness of the

resolvent of Ap, ,r. The discreteness of a(Ap ) follows immediately;

see Kato (17, p. 187].

Proof of Theorem 4.8. It will be shown that if E A+ then the
P

operator in L2 (Q0,) defined by
0 ,r

(8.191) T - Pp,r R(Ap,7T P(0)) Pr

is a bounded inverse of A - T in L2(or). To prove that T is

a right inverse of Ap, ,r - 7r( ) let f E L2(0,r) and define

u - R(Ap,'P ())f. Then u E R(A p) and

Sf in Q0,r'

(8.192) (Ap - 7p ())u - Prf =
~0 in Qr

r

In particular, (A + n ())u - 0 in Qr and thus since u E L2(f) thep r

Fourier expansion (4.28) must hold with Im wp~( ) > 0 for all m r Z.

Thus u C Fp, ,r and it follows that Pp,,r
u E D(A p,,r) and

(8.193) [Ap,7,r ip( )]Tf- (AP - 7r Wp()]PP, ,rU I (-A - T( ))u f

by (8.192).

4 I -I I III III I II I I II I I .. ... .......
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To prove that T is a left inverse of A - t p(r ) let

v 6 D(A ). Then u P-1 v has Fourier expansion (4.28) with

IMw(C)> 0 for almEZ because Thus uE F
pMp p, ,r 2

- D(A p) and one has

Pr[Ap,, W Ip)V - (-A - 7rp(0))P-pp,;,r v

(8.194)

Ap p- p(;))p-P P p,C rv

whence T[Ap,C, r - ip(W)]v - v.

Proof of Theorem 4.9. The family of operators

{Ap,, r - itp() M M} is holomorphic (Theorem 4.6) and has compact

resolvents (Theorem 4.7). It follows from a theorem of Kato [17, p. 371]

that either p - Mp or Zp has no accumulation points in M P. But

e l = by Theorem 4.8. Hence the second alternative must hold.
P P

To prove that Z is independent of r > h let h < r' < r andP

suppose that it (C) E a(A ,). Then there exists a non-zero
p

v E D(Ap ) such that (A - IT ( ))v - 0 in L2 (0,). But then
pCrp , ,r p 2(o,r

u-P1 uEF ocu - P-,,r u e F p, ,r C L2' (, 1) and (A + 1Tp ))u 0 in all of Q. In

particular, the Fourier expansion (4.28) holds in Q Thus u EF

and hence P p,,ru e D(Apr,) and (Ap, ,r, - (O)p ,U - 0. Thus

itp(r ) • a(A as was to be shown. The same argument is applicable

if r' > r.

Proof of Corollary 4.10. Theorem 4.7 implies that every z E C

is either an eigenvalue of A or lies in p(Ap ). Hence for each
M Ep - E one has t (C) E P(Ap ) and it follows from [17, p. 3671

p p p ,

that Rpr is holomorphic on M- Thus to complete the proof it is

'1

p.

i I tI 1 I I I ! -I I II II I I I I I I
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enough to show that each EZ is a pole of Rpr . This will be

deduced from S. Steinberg's theorem [28] and the following

Lemma 8.19. Let G and Im rp( ) > 0 (resp., < 0). Then
p

every z C O(Ap,,r) satisfies Im z < 0 (resp. > 0).

Proof of Lemma 8.19. Let v E D(A,,r) be an eigenfunction of

Ap,;,r with eigenvalue z : v # 0 and A p,,rv - zv. Then

up-Prv e F, and hence

(8.195) (A + z)u = (A + z)v = 0 in QOr' and

(8.196) (A + z')u = 0 in

where z' = n (p). Moreover, Lemma 4.1 and Sobolev's embedding theorems

imply that y - u(*,y) is in C'([h,-),L 2 (-n,Tr)). In addition, the
assumption E M+ implies that u E D(A ) C

p p L 2 ().

Application of Green's theorem to u and u in r, gives, by

(8.196),

(8.197) (-21 Im z') lul 2 dX = - u u- dx.f2 co-7P D jy=r

Similarly, application of Green's theorem in a, gives

(8.198) (-2i IM z) juld2 dX u u LY dx.

0,r

Adding (8.197) and (8.198) gives

(8.199) Im z'J u2 dX + Im z f lu12dX-0.

r,m o,r
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Thus if Im Tp M Im z' > 0 and Im z > 0 then u(X) E 0 in 0r,. But

then u(',r) - 0 and Dy u(,r) - 0 and hence u(X) - 0 in 0o,r by the

unique continuation property for (8.195). Hence Im Tp (C) > 0 implies

Im z < 0. The other case is proved in the same way.

Returning to the proof of Corollary 4.10, it will be shown first

that every C. E Z p such that

(8.200) Im IT(C0) > 0

is a pole of R,,. To this end choose C, E M+ such that Im 7() > 0,

so that

(8.201) {z I Im z > 0} C p(Ap )

by Lemma 8.19. Next choose a z, E C such that

(8.202) z, E p(Ap, ,Ir)

(8.203) z I E p(A p, ) for all C E N( 0,6),

where N(C0 ,6) is the component of r-1 (D(7r (W0) ) containing C

N(C0 ,6) has compact closure and hence such numbers zi exist by Corollary

8.5 above. In the remainder of the proof the following notation is used:

(8.204 R( ,z) = (Ap,4,r - z)-
(8. 204) 1 R ir(c)

R() - R(CIIp

With the above choices of 41 and z, the operator

(8.205) B(z) = (1 - (z - zj) R(C,,z,)) -

LA
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exists and is holomorphic for Im z > 0 (i.e., in an open set containing

Im z > 0). Indeed,

(8.206) 1 - (z - z) R( ,,z) - (ApCl r - z) R(C1 ,z1 )

and the existence of B(z) follows from (8.201). The analyticity

follows from that of R( ,,z).

To complete the proof of Corollary 4.10 note that (8.200) and

(8.201) imply that p (C0 ) E P(Ap, 1 ,r ). Since the resolvent set is

open, the continuity of it implies that there exists a 6 > 0 such that

7r() e p(A ) for all e N( 0,6). Hence B(r ()) exists and is
p p.,1,r p

holomorphic in N(Co,S). Now for all such C one has, by (8.202), (8.203),

Or- (p( zj) R(C,zi) - I - (7 p( zj) R( ,,z, )

(8.207)

- (7 ) - Z) {R( ,z1 ) - R(;I,z,)I.

Multiplying by B(ip (C)) gives

(8.208) B(ir p()){1 - (rp (C) - zj) R( ,zj)} - 1 - T( )

where

(8.209) T( ) - (np( ) - zj) B(r p(c)) {R( ,z,) - R( ,,z )}

defines a compact operator-valued holomorphic family in N(C,,6). By

Steinberg's theorem (28], (1 - T(W)) - either exists nowhere or is

meromorphic in N( 0 ,6). The second case must hold because the

singularities of (1 - T(W))-1 are those of R( ) and hence are isolated.

In particular, for 6 small enough (I - T(C)) -1 is analytic in N( 0,6)

t1
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except for a pole at C -o. Equation (8.208) then implies

(8.210) A p IT (C) - B( (C)) (1 - T(C)) R(C,z 1 )p,;,r p p

and therefore

(8.211) R(C) - R(C,zl)(1 - T(C)) - ' B(7r Wp )

for C E N(C0 ,6) - (Co}. This exhibits R(C) as a product of operators

that are holomorphic at Co and one that has a pole there. The residue

of R(C) at C0 has finite rank [28] and hence p (CO) is an eigenvalue of
p

finite algebraic multiplicity [17, p. 181].

Proof of Corollary 4.11. This result follows i-mmediately from

Theorems 4.4 and 4.8.

Proof of Corollary 4.12. It will be shown that

(8.212) c0(A ) C 7T (m+ n )
p p p p

The discreteness of o0 (A p) will then follow from Theorem 4.9. To prove

(8.212) let X E a0(Ap) C a(A ) - [p 2 ,-) and let X ± iO denote the points of
p p

Mabove X so
p

(8.213) 7 (X ± iO) - X.

If u e D(A ) is a corresponding eigenfunction of A then u E Fp,±iOr,
p pp iOr

v± -PpA±iO,ru E D(Ap ,±iO,r) and (ApX±iO,r - X)v± = 0. Thus

(Ap,±iO,r - tp (X ± iO)) is not invertible and hence X ± iO r ZP,

The inclusion (8.212) and Theorem 4.9 imply that a o(A p) has no

finite limit points. To show that each X E G0 (A p) has a finite dimensional

eigenspace note that the algebraic and geometric eigenspaces of A
P

coincide because A is selfadjoint. Moreover Pp,±iOr maps the eigenspace

p ,iOrm
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of X E ao(A ) onto the geometric eigenspace of Ap,XtiO,r for X, as was

shown above. However, the latter coincides with the geometric eigenspace

of the compact operator R(X ± iO,z) defined by (8.204) and hence is

finite dimensional.

Proof of Corollary 4.13. To prove (4.43) note that if

X E (M n ) -T then X + iO or X - iO is in M+ r Ep and hence
p p p p p p

A - np (A ± iO) is an eigenvalue of Ap,X+iO,r or Ap,X-iO,r with eigenfunc-

tion v+ or v . But then u+ - p+iO r v+ or u - IP v will have
pX~i~r V+p,A-iO,r

a p-periodic extension to G that is a pure outgoing or incoming R-B wave

for A. It follows from Theorem 2.1 that u+ or u_ is an eigenfunction

for Ap with eigenvalue X; i.e., A E 0(A p).

Proof of Theorem 4.14. Both statements of Theorem 4.14 follow

from the continuity of the family {Ap,C,r : (p,C) E M} and a theorem of

Kato (17, Theorem IV.2.251. Indeed, if (p0 ,C0) E M - E then

Tr(CO) E p(A0 ) and hence R R when (p,) - (P0, 0)"
p 0

0  P0,c0,r p , ,r p,,C,r

Moreover, it follows from Kato's theorem that there exists a neighborhood

N(p0 ,C0,p,S) C M - Z.

Proof of Theorem 4.15. This result is an immediate corollary of

Theorem 4.14 and Theorem 4.4.

Proof of Corollary 4.16. Theorem 4.15 implies that (p,C)

p R E B(L2(0,), L(A, 2 ,)) is continuous on M - E for
pIC,r p,C, 2,r o , r

each r' > r. This implies (4.49) with

(8.214) C(K,r,r') - Max P-i R I(p, )EK p, ,r Rp,C,r r,r'

where -H r,r' denotes the operator norm in the space B(L2(Q2,r),L'(A,i1 O)).

Proof of Corollary 4.17. This result is a special case of

Corollary 4.16.'ii



§9. Proofs of the Results of §5.

Theorem 5.1 is a direct consequence of Theorem 2.1 and the

results of §4.

Proof of Lemma 5.2. The proof follows the plan of (34, Lemma

6.31. Definitions (5.16) and (5.25) imply that if f E Lcom(Q) then

f(p+m,q,z) - f 0 (X,p+m,q) j(y) f(X) dX + f f '(X,p+m,q,i) f(X)dX

(9.1)

- (Jf); (p+m,q) +fu R(A pi) M.,p+m,q) f(X) dX
suppf f

- (Jf); (p+m,q) + M(X,p+m,q) R(A, Z) f(X) dX
fh,r

- (J f) (p+m,q) +

+ J (A+t2(p+m,q)){J(y)o 0(X,p+m,q)} R(Ap,z) f(X) dX
hr

since 0'(.,p+m,q,z) - R(A ,Z) M(-,p+m,q) by (5.13) and Theorem 4.8 and

supp M C h,r" The next-to-last equation follows from R(A ,Z)

- R(Ap T)*. To derive (5.26) from (9.1) it is necessary to integrate by

parts in the last integral. This cannot be done directly because

J(y) ,0(X,p+m,q) 4 L2 (S). To complete the calculation introduce a

function E CO(R) such that '(y) < 0, (y) - 1 for y < 0, (y) - 0 for

y > 1 and define

51
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(9.2) En y) E -( n) ~ ,y n

0, y > ni + 1

Then for n >rone has E (y) 1lon ao~ and hence

f(p+m, q, z) =(J f) (p-n, q)

(9.3)

+ J(&4- 2(p+m,q))fj(y)p0(X,p+m,q)} En(y) RCAp ,z) f(X) dX

Now

(9.4) j(y) 0 (X,p+m,q) E D(AN" oc(Q)) (resp. D(AD""oc(O)).
p p

This may be shown by interpreting exp {-ipx} 0 (X,p+m,q) as a function

on the cylinder Q? (see the proof of Lemma 4.1) and recalling that j(y)

0 for 0 < y < (h+r)/2. Moreover,

since RCA , z)f E D(A p). Conditions (9.4), (9.5) and the integral

identities of (3.19), (3.20) applied to u -J i0  and v =%RCAp ,Z)f

give

A {J~y)40(X,p+m,q)} n (y)R(A p ,z)f(X)dX

(9.6)

f- Jj(y)Op0(X,p+m,q)} * V{ (y)R(A~ z)f(X)}dX

Q
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(9.6 cont.) - - ? i(JY)&n I(y)4(Xp+mq)}" V* n(y)3(y)R(A pz)f(X)}dX

where j E C0 (h,-) and '(y) - for y > (h + r)/2. Now

(9.7) Jy)E 1 (y)4o(X,p+m,q) e LI'P(Qon+2)

and

(9.8) En(y) 3(y) R(A ,z) f(X) e D(AN(a2,n+d)
p p or+

and a second application of the integral identity of (3.19), together

with (9.6), give

f A {j(y) O(X,p+m,q)} n(y) R(A ,Z) f(X) dX

(9.9)

f J(Y) n+(y)4 0 (Xp+mq) A{ n(y)'(y) R(Apz) f(X)}dX

f j(y) qPo(X,p+m,q) {E(y) R(A ,Z) f(X)}dX

because n+l(y) -1 on supp n and '(y) 1-- 1 on supp J. Also, Leibniz's

rule for distribution derivatives implies

(9.10) A{ nR(Ap z)f} = n AR (A ,z)f + 2 n DyR(Ap,z)f + nR(A p,z)f.

Combining this and the differential equation AR(Ap,z)f = -A pR(A p,z)f

-f - z R(Ap,z)f gives

Ii p
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(A+wz(p+m,q)) R(Ap,,z)f} _%-~f + (W2 _Z)~RC zf

(9 .11)

+ 2 ' D RCA ,z)f + " RCA ,z)f
fy p n p

Combining (9.3), (9.9) and (9.11) gives

f(p+m, q, z) = (J f) _0(p+m, q) - fu p 0 (X,p+m,q) (y)j(y)f(X)dX

(9.12)

* (W2 (p+m,q)-z) fQ OXpmq n (yjyRpz)f(X)dX

+ 2 fQ 0(X,p+m,q) En(y) j(y) D yRCAP ,z)f(X)dX

+ f2 00 (X,p-ki,q) "(y) j(y) RCA ,z)f(X)dX
nP

Now n(y E 1 on supp f and hence the first two terms of the right-hand

side of (9.12) cancel for n > no - no(f). In view of the definition

(3.28), (3.31) of the unitary spectral mapping Dop associated with

A OP equation (9.12) implies that for all n > no one has

i(p+in,q,z) =(w
2 (p+m,q) - z) {(D p J R(A~ pz)f)} m(q)

(9.13)

+ 2 {(D0 (E'J D R(A ,z) f) (q
,pn y p

+ {(~0P (IJR(A~ ,)O zf (q).

Now J R(A , Z)f E L(O and J D yRCA , z)f because R(A , Z)f eD(A )

C L101). Moreover, 0O< E(y) E1 (Y) - 1when n .ofor all y 0

2
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and supp n supp n C (y I n < y < n + 1}. It follows by Lebesgue's

dominated convergence theorem that &n J R(A ,z)f * J R(A ,z)f,

n' J D R(A ,z)f - 0 and Q J R(APz)f - 0 in 2(B,) when n Hence

passage to the limit n o in (9.13) gives

(9.14) f(p+m,q,z) = (w'2(p+m,q) - z) {0,p (J R(A ,z)f)}M(q)

which is equivalent to (5.26).

Proof of Lemma 5.3. This result follows from the continuity of

f(p+m,q,X±io) for q > 0, X E [pz,-) - Tp and a > 0. The details of the

proof are precisely the same as in [34, Lemma 6.6] and are therefore not

repeated here.

Proof of Lemma 5.4. The starting point for the proof of (5.34)

is equation (9.1) with z - X + ia, X E I C [p2 ,o) - T and 0 < a < a0.

(9.1) can be written

(9.15) f(p+m,q,z) = (Jf)o (p+m,q) + g(p+m,q,z)

where

(9.16) g(p+m,q,z) f M(X,p+m,q) R(A ,z) f(X) dX.

r

Note that (see (5.9))

(9.17) M(X,p+m,q) = 2 D {J'(y) 00 (X,p+m,q)} - J"(y) 4 0(X,p+m,q)
y

and hence

(9.18) g(p+m,q,z) - g1 (p+m,q,z) + g2 (p+m,q,z)
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where

(9.19) g1 (p+mqz) "- 0 (X,p+m,q) J"(y) R(Ap,z) f(X) dX
ah, r

and

(9.20) g2(p+m,q,z) - 2 f Q Dy {J'(y) ,0 (X,p+m,q)} R(Ap,z) f(X) dX
h,r

In the last integral note that R(A ,z)f is in L22 0 [h,oo),L 2 (-T'r))

(cf. Lemma 4.1) while j'(y) 00(X,p+m,q) E C'([h,c),L 2 (-n,n)) and J(r) - 0.

It follows that

(9.21) g2(p+m,q,z) - -2 r p0(X,p+m,q) j'(y) Dy R(A ,z) f(X) dX
h,r

Note that (9.19) and (9.21) extend by continuity to z = X ± ia, with

E I and 0 < a < a0, by Theorem 4.15.

Equations (9.15) and (9.18) imply that

(9.22) jf(p+m,q,z)j 2 < 4(1(J f)- (p+m,q) 12 + Ig,(p+m,q,z)1 2+ lg2(p+m,q,z)1
2).

t0

Moreover, Parseval's relation(3.29) for A implies

(9.23) Z [(J f); (P+m,q) dq = f2 < IU 2 )

where supp f C 0 ,k" Hence to prove Lemma 5.4 it will suffice to prove

(5.34) with f replaced by g, and g2. For g,, equation (9.19), Parseval's

relation (3.29) and Corollary 4.17 imply

Is
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X 0 ( gpmqz dq 1 Ii" R(A ,z)f12
meJ 1 p L(B)

(9.24)

< (Max Ij,Cy)1) 2  IR(Ap Z)fj2( 0,)

< (Max ij"(y)I) 2 C2 IfI2 (no,

for all z = X ± ia with X E I and a E [0,a 0 ] where C - C(Ip,a0 ,k,r)

= C(I,p,a0,f) is the constant of Corollary 4.17. The proof of Lemma 5.4

may be completed by noting that the integral (9.21) for g2 has the same

form as (9.19) but with J" R(A ,z)f replaced by 2 j' D R(Ap,z)f. An
p p

estimate for g2 of the same form as (9.24) follows because the L2 (Q ,r) norm

of D R(A ,z)f is majorized by the LI(Aj,) norm of R(Ap,z)f.
y p o,rp

Proofs of Theorems 5.5, 5.6 and 5.7. These results all follow

from (5.35) by the spectral theorem and standard Hilbert space methods

and therefore will not be given here. A detailed development of these

arguments in the case of exterior domains may be found in [34, pp. 109ff].

Proof of Theorem 5.8. Only the orthogonality relation (5.45)

need be proved. The proof presented here is based on a method introduced

in [34] for the case of exterior domains. The proof for the case of

grating domains differs in some important technical details from that of

[34] and is therefore presented in full here.

The isometry +, is known to satisfy (5.45) if and only if
+'p

[34, p. 116]

(9.25) N(*, ) {0}

i.e., the null space of #* contains only the zero vector. Equation
.1,p
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(5.45) will be proved by verifying (9.25). The following two lemmas are

needed.

Lemma 9.1. For all h - fhM(q)} E E 1 L2 (R0 ) one has

(9.26) 4* h(X) = 1.i.m. X f (Xpm,q) h(q) dq
+P IL 0

where the convergence is in L2 (2).

Lemma 9.2. Let h E N(I* p ) and let (X) be a bounded Lebesgue

measurable function on X > p2. Then

(9.27) h' - {'(w 2(p+m,q))h (q)} E N(p).

Proofs of Lemmas 9.1 and 9.2. Lemma 9.1 is a direct consequence

of (5.38) and (5.42); see [34, Lemma 6.17). To prove Lemma 9.2 let

f E L2(Q) and note that the definitions of +p and _, and Theorem 5.7

imply

h') = (:+, f,h')

(9.28)
(98~ f+(p+m,q) '(W2 (p+m,q)) h (q) dq

ME 'P T (W2 (p+m,q)) f+(p+m,q) h (q) dq
Z- 

m

E= (+ (A Mm(q) hm(q) dq

(+,p (A p)f,h) - ('(A p)fAph) -0 .

This proves (9.27) since f E L2 (Q) is arbitrary.

4 g
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Choice of T(X). Let

(9.29) I (a,b] C [p
2
,) T pp

and define

(9.30) T(X) = exp {-it X1/2} XI(X), X > p2,

where t E R and XI(X) is the characteristic function of I. It will be

shown that Lemma 9.2 with this class of functions T(X) implies (9.25).

The following notation will be used.

(9.31) N -{m : w 2 (p+m,q) E I for some q > 0}

Note that N is a finite set. Moreover, q - w 2(p+m,q) is monotone for

q E R. and hence for each m E N

(9.32) X = w 2 (p+m,q) E I "I* q = - z E I p C Ro -Em,p

where I is a compact interval and E is defined by (5.15). Withm,p m,p

this choice of T, Lemmas 9.1 and 9.2 imply that if h E N(#(, ) then

h'(X) = +(X,p+mq) T (W2(p+m,q)) hm(q)dqp mEZ

(9.33)

Z fi 0(X,psm,q) e-itw(p+ m 'q) hm(q)dq = 0
MEZ I p

in L2(6). The left hand side of (9.33) defines a solution of the

d'Alembert equation in Q. Its behavior for t * ; will be determined

and shown to imply (9.25). For this purpose one needs the

Far-Field Form of *±(X,p+m,q). This phrase means the form of

±(x,y,p+m,q) for large y; i.e., far from the grating. To derive it note
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that (5.14) and Lemma 4.1 imply that

(9.34) -,(~pmq I 01 ,p+mi,q) exp {i(p4-L)x}

2 ,2oc
in L2  01h). Moreover, for y > r

(9.35) O.,.(y,p+m,q)} - a±j(p~hn,q) exp {iyw .(w 2 (p+m, q) 10i)}

It follows that for q E I s and X E r

0+(X~~msq - 0 (X,p+m~q)

(9.36)

+ I a (p+m, q) exp ix p, ± iqql + p (X, p+n, q)

where

(9.37) L - L(p,I) it {2 p+tjI < w(p+m,q)}

and

(9.38) (pZ,qj) (p+k,(w 2(p+m,q) -PZ /

while

(9.39) p+(X,p+m,q) = 0 ,(y,p+n,q) exp {i(p+2.)x}

where

(9.40) L' -L' (p,I) it (2 jp.I.2 > w(p+m,q)}
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It is important to note that for q E I the sets L and L' are inde-

pendent of q and depend on p and I only. An estimate for the term p,

in (9.36) is given by

Lemma 9.3. There exists a constant U - V(p,I) > 0 and for each

r' > r a constant C - C(I,p,m,r,r') such that

(9.41) Ip,(X,p+m,q)j < C e- py for X E r, q E Im,p

Proof of Lemma 9.3. For brevity write u(X) - *+_(x,p+m,q) and

note that u • F with f w2(p+m,q) ± iO E - In particular

by Lemma 4.1

(9.42) u(X) = [ u,(y) exp {i(p+2)x} in L7'£°C(t )

2WZ2

and

(9.43) uX(y) - uj(y') exp {_(y_y,)((p+Z)
2 - W2(p+m,q))1/2}

for all y,y' > r and all £ E L'. Now by a Sobolev inequality [1, p. 32]

there exists a Co = C0(h,r) such that

2 <u C2)
(9.44) Ju1 (r)

2 < C u() 2 dy + f Iut(y) 2 dy]

Moreover,

(9.45) Iu(',y)| L(_7,I) 2 27 u1(y)

2E
(9.46) ID4 u(,Y)L , 27 ui(y)12

y L2 (Tr TO Z
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which, with (9.44), imply

ju,(r)12 < C(27)-I(ID U12r + Iu1,r)

(9.47)

C2(27r)- I JU12
0-C 1;h,r

i.e.,

(9.48) 10+4(r,p+m,q)12 < C2(2w)1 It;(hp4rq)12

Now the right hand side of (9.48) is a continuous function of q 6 - E
M, p

by Theorem 5.1. Thus there exists a constant C1 = C,(I,p,m,r) such that

(9.49) I2'+(r,p+m,q)j < C1 for all q E I

Next, recalling (9.29), define

(9.50) P = I(p,) - Min {(p+2) 2 - b2}1/2

so that for all q E I and I E L'(p,I) one hasm,p

(9.51) {(P+Z)2 _ W2(p+m,q)}1/2 > {(p+2,)2 - b 2}1/2 > 1 > 0

Then for r' > r and XE er" q El one has the estimates

'I p+ (X,p+m, q) < 'y(YPm,q)

(9.52) 
2 -L L112
< I+.'(r,p+m,q)j exp {-(y-r)((p+Z)2-(w2(p+m,q))1/2}

< C1  ' exp {-(y-r) {(p+9) 2 - b2 } 1 /2
£ZEL'

(C1  exp {-(r'-r) {(p+.)2 - b'}'/'} ) exp {-Ii(y-r

.1EL'
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which implies (9.41).

Proof of Theorem 5.8 (continued). Substitution of the far-field

form (9.36) for 0. in the identity (9.33) gives the identity

(9.53) u0 (tX) + u1 (tX) + u2 (tX) - 0 in L2(S)

for all t e R where

(9.54) Uo(t,X) ff0,f (X,p+m,q) e-i tw (p+ m 'q ) hm(q)dq

mEN I 1
m,p

mp

(9.56) u2 (tX) - I P+(X,p+m,q) e- itw (p+m q) h (q)dq
meN fI -m

m,p

Note that uo(t,X) has an extension to X E Bo such that (see (3.32),

(3.33))

(9.57) uo(t,') = exp {-it A1/2 } h

where

(9.58) h= * {Xm h : m E Z} E L2 (Bo)-. 9.5) h o0 p m

and Xm,p is the characteristic function of Im'p . In particular, one has

(9.59) Iuo(t,.)1 (B) = hIhmlq() h 2 dq
0 L2(B o) =hlL2(B0 )

m=N fI
m,p

The proof of Theorem 5.8 will be completed by showing that

(9.60) lim HUo(t,.)HL - 0

iq. .1 ......
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It follows from (9.59), (9.60) that hm(q) 0 for almost all q E I
m,p

But A = w2 (p+m,q) maps R0 - E bijectively onto [p2,c) _ T (see
m, p p

(5.15)). Thus given any m E Z and any interval I C R- E there ism,p m,p

an interval I C [p2 ,) - Tp such that the above relations hold. Thus
h m(q) E 0 in R0 - E for every m E Z, whence h - 0 in Z @ L2 (R0)

which prove (9.25).

Proof of (9.60). C-nsider first the function u1 (t,X) defined by

(9.55). It can be written

(9.61) u1(t,X) = u m(t,X)
mEN

where

(9.62) ul,m(t,X) U U,, (ty) exp (i(p+9)x}

and

(9.63) u 1 , , (ty) at(p+m,q) e+iYqk-itw(P+m'q)h (q)dq
I
m,p

In the last integral

qZ - {W2 (p+m,q) - (p+,,)2}1/2

(9.64)

a {q 2 + (p+m) 2 _ (p+£ )2}1/2 R Q(q,p+m,p+Z)

Make the change of variable

(9.65) q' qk Q(q,p+m,p+Z)

I
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in (9.63). Since

(9.66) W2 (p+m,q) - w2 (p+Z,q')

one has

(9.67) q - Q(q',p+£,p+m)

and

(9.68) u (ty) e-±( ) e+iyq'-itw(p+k q ') h (q) aq? dq'(9.6) u I m, £ ( Jy )  a[(p+m,q) q

m,t,p

Now each of these integrals has the form of a modal wave in a simple

waveguide [35, §5]. Moreover, it was shown in (35] that

(9.69) lim U , , L2(R0 ) - 0.

Thus it follows from (9.69)

(9.70) u (t,',y)I2  27 Z Iu (ty)l 2

L2 (-,) EL i,m,

(9.71) lU 1 (t,')1 2  = 2( t It,)C 2IM LZ(B 0 )  2T U 1m,£( L (RO)

and

(9.72) Iu (t,')IL (Bo) < IUm(t,.)IL(B)I -2B, mEN m L()

that

(9.73) lim IuI(t,')L (B)

t- 0L(
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It will be shown next that the function u2(t,X) defined by

(9.56) satisfies

(9.74) lir Uu2(t,')IL2(Q ) = 0

t-P-:PW

This is a consequence of the following two lemmas.

Lemma 9.4. The function u(t,X) = u2 (t,X) defined by (9.56) has

the properties

(9.75) u(t, *) E L2 (Q) for all t E R,

(9.76) lim lu(t,')p = 0 for all k > r,

and there exists a p > 0 and for each r' > h a constant C = C(r') such

that

(9.77) lu(t,X) < C e-1y for all X E r , and t E R.

Lemma 9.5. If u(t,X) is any function having properties (9.75),

(9.76), (9.77) then

(9.78) lim Uu(t,")L2 = 0
t-*±0ooQ

Proof of Lemma 9.4. To verify (9.75) note that by (9.53),

u(t,') = u2 (t,') = -u0 (t,") - ul(t,.) in L2 (&'). But u0 (t,.) G L2 (B0 ) by

the spectral theory of A0, p (93 above) and u1 (t,') E L2 ([-r,rj x R) by

the theory of waveguides as developed in [35]. Thus the restrictions of

these functions to Q are in L2 (Q).

The decomposition u = u2 = -u0 - ul also implies (9.76) because

u0 and u, both represent waves in simple waveguides which have this local

decay property; see [35].

I
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Property (9.77) is a consequence of the definition of u2,

equation (9.56), and Lemma 9.3. Indeed, combining (9.41) and (9.56) gives

(9.77) with Pi = Pi(p,I) defined by (9.50) and

(9.79) C =C(I,p,m,r,rt ) Z JI Ih,(q)l dq
MEN m~p

Proof of Lemma 9.5. Conditions (9.75) and (9.77) imply that one

has for each r' > h and k >r'

jU~t'.) = IU(t)[I
2  + Ut_1

(9.80)

=IIU(t,-)1I2k + fo' fT IU(t,X,y)j 2 dxdy

< OU(tr.)02 + C J' fn e2-Y dxdy

U I(t, )I 2  + (7T C2/0~i e-211k
0 ,k

where C =C(r') is independent of k. Making t ~ ~in (9.80) with k

fixed gives, by (9.76),

(9.81) lrn SUP 11 U(t, .)l 0 Q < (TT C 2Ii) e-2uk

for all k > r'. This implies (9.78) since the left hand side of (9.81)

is independent of k.

Proof of Theorem 5.8 (concluded). The proof may be concluded by

verifying (9.60). Now the identity (9.53) implies
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Iuo(t,)L2 (Bo) < uo(t,') L2(Bo S) + Huo(t,')IIL2()

(9.82)
< quo(t,'.)IIL2 (BO- ) + IIu1(t,')OL2(Bo) + tu2(t,') L().

Moreover, Bo - 2 is bounded and hence uo(t,.) - 0 in L2 (BO - Ql) by the

local decay property for A O p . The remaining terms on the right hand

side of (9.82) tend to zero when t ; ° by (9.73) and (9.74).



§10. Proofs of the Results of §6.

Proof of Theorem 6.1. It will be shown that if 0,(X,p+m,q) are

the generalized eigenfunctions for A pwhose existence is guaranteed by

Theorem 5.1 then the functions P,(X,p,q) defined by (6.5) have properties

(6.1), (6.2), (6.3). This will prove the existence statement of Theorem

6.1. Note that q E E m -(p,q) E E (see (2.30) and (5.15)). Hence

the construction (6.5) is valid for (p,q) E R 2 - E.
0

The sets D(A9 o) are characterized in the cases of the Neumann

and Dirichlet boundary conditions by (see (1.26), (1.28))

(10.1) D(A N 9Zoc (G)) = L 'Zoc (A,G) nl {u: (1.14) holds for v ELC Co G}
2 2

(10.2) D(AD'.oc (G)) = Ll'k2 oc(A, G) n L D kocG

As a first step it will be verified that (6.5) defines a function

4i,(,,p,q) E L2:Zo(A,G) for each (p,q) E R2 E. It is clear that
2,0 c

2.occ

E L2 (Q2) for p, E (-1/2,1/2], m E Z and q E RO - E .It remains to
m~p

show that V P(&,p,q) and #ip(.,p,q), as elements of V'(G), are also in

YLoc 19
L2  (G). Now by definition 0,(.,p+m,q) E L (A,) and hence (6.5)

2

implies

(10.3) +(*,pqq E L 1,o Li U

Hence, it is only necessary to verify that iP+(.,p,q), Vtp4 and 64)+ are

locally square integrable near the lines {(2t+l)ff x y : XC Z} (see (3.4)).

Moreover, ip+((2k+1)7 ± 0,y,p,q) and D1jp+((2k+1)nr ± 0,y,p,q) exist in

69
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xocL2  (y) (see the discussion preceding (3.7)) and the p-periodic boundary

condition for P± and (6.5) imply

(10.4)

DI ±((2+l)1T+0,',p,q) = D1 1+((2Z+l)7T-0,,p,q)

The proof that p+(.,p,q) E L2 £°c(A,G) will be completed by proving

Lemma 10.1. The distribution derivatives Dj P+(.,p,q) are given by

(10.5) D i +(x,y,p,q) = exp {21Ti.p 0} D±(x-2 £,y,p0+m,q), (x,y) E )

for j = 1,2. Moreover, ip±(.,p,q) satisfies (6.2) as a distribution on G.

Proof of Lemma 10.1. (10.5) will be proved for j 1 1. Thus it

will be shown that for all e E C'(G) one has

(10.6) f i)+ Die dX - -f Dj,+ e dX
G -G -

where D, + E L9oc(G) is defined by (10.5). This will be verified for

functions 6 with supp e C Q(O) U S(I) u (iT x y). In this case (10.6) is

a consequence of (10.4) and the equations

j. f
(10.7) Ji() D1 dX () Dlt+ 6 dX + j i+(I-0,y,pq) dy

(10.8) J + Die dX , -f D,+ 9 dX - j ,+(n+0,y,p,q) dy-OO I, _x-

Equation (10.7) may be verified by calculating

,j
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(10.9) Iao ±Dj( 66) dX,

where 06(x) - 0((x-w)/6), 06(x) = 1 for x < 7-6, 0,(x) B 0 for x > it and

0 < q 5(x) < 1, and then making 6 - 0. The technique is explained in

[35, p. 57ff]. The case of a general e E CO(G) may be proved in the

same way. The proof of (10.5) for j = 2 is similar. Moreover, an

analogous calculation, based on (10.4), gives

(10.10) A+(x,yp,q) = exp {2lTi£p 0} A+(x-27Z,y,p 0+m,q), (x,y) E Q

and it follows from (5.2) that _ satisfies (6.2).

Proof of Theorem 6.1 (continued). To complete the proof that

2-oc
4+(',p,q) E D(A ° ) in the Neumann case, condition (1.14) must be proved

for v E L'com(G). Now for such a v one has, by Lemma 10.1,

f AO,+ v dX A J(v, d
G -G, Z f -

(10.11)

R Z A (x+272,y,p,q) v (x+2Trk,y) dX

- f A0+(x,y,p,q) e2Wip v (x+2Trt,y) dX

I -
f AO, u dX

where

(10.12) u(x,y) - e2itp v(x+2TZ,y) e L'P'com(a)
9jez 2

A
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Note that the sums in (10.11), (10.12) are finite because v E L2 ,c m(G).

A similar calculation gives

(10.13) f W+ " Vv dX f 0 V dX
G - f -

and adding (10.11), (10.13) gives

(10.14) fG f&P ±V + 0* v1d -f ~+ VO, -*}- dX =0

because ± E D(AN'£oc(0)) and u E L 'P'com(Q) (see (3.19)).
2

To complete the proof that 4±(',p,q) E D(A ° c) in the Dirichlet

D toc 0
case, it must be shown that i±(',p,q) E L2 9 (G) = Closure of C,(G) in

L2  (G). This follows immediately from (6.5) because t±(.,p,q) is

D~~o(O) -Closure of C 00(Q) in L ,2oc 6)
p-periodic and 0±(-,p+m,q) E lor c L2)

To see this note that on any set K r) G where K is compact in R2 the

functions e E C (G) coincide with functions 8' 4 where E C0 (R ) and

V(X) R 1 on K.

It has been shown that p(.,p,q), defined for all (p,q) E R2 - E

by (6.4), satisfies (6.1) and (6.2). Condition (6.3) is also immediate

because and 0 satisfy ip0(X,p,q) O7 0
p

0 (X,p0+m,q) (see (3.27)) and

hence

(10.15) ip(X,p,q) - 0po ¢ (X,p0+m,q)

It follows that '(resp., ip)is an outgoing (resp.,incoming) R-B wave for G.

The uniqueness of 4±(.,p,q) was proved in §6. To complete the

p locproof of Theorem 6.1 the continuity of (p,q) ,(.,p,q) e L2'£°(A,G)
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for (pq) CR - E must be shown. Note that since 4_+ satisfies (6.2) it

will be enough to prove the continuity of the mapping (p,q) - _+(-,pq)
1 ,1OC( )

L2 (G). Thus it must be shown that for each compact K C R2 and each

(po,qO) 6 R2 - E one has

( I ( ,P,q) - ( 'pojqO)IL2(K )G)  ' 0

(10.16)1

IVIP.(',P,q) - V P(',p0,q0)IL2( G) ' 0

when (p,q) - (p0,q0 ). For the functions 40(*,p,q) the continuity condi-

tions (10.16) follow from (1.33), (1.34) by direct calculation. For

'.(',p,q) they follow from (6.5) and the continuity of (p,q) "(-,p,q)

S,Zoc
E L2  (a): i.e.,

I - 0q)

(10.17)

IVO'C(,p,q) -V _/.p0,q0)I 0

when (p,q) - (p0 ,q0). (10.17) is a consequence of Theorem 4.15 and the

definitions (5.13) and (5.14). (10.17) and (6.5) imply (10.16) because

K n G is contained in a finite union of the sets K n ()

Proof of Theorem 6.2. This was given in §6.

Proof of Corollary 6.3. As remarked in §6, these results follow

from Theorem 6.2 and the fact that Lc m(G) is dense in L2 (G). The details

may be found in (34, p. 109] where the corresponding results are proved

for exterior domains.

Proof of Theorem 6.4. The proof outlined in §6 will be completed

here. The two boundary conditions will be discussed separately.
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The Dirichlet Case. Proceeding as in §6, let f E L2°m(G) and

define

(10.18) u = R(AD(G),z)f

and

(10.19) vM(X) - OM(X) u(X) , x e G

where O(X) - (IX - M) 6 C(R 2 ) satisfies 0(X) R 1 on Gm and

supp O C Gm+,. Then it is easy to verify that vM E D(AD(G)) and

(AD(G)-z) vM(X) - -(A+z) 4M(X) u(X)

(10.20)

- (X) f(X) - 2Vu - u AN

- f(X) + gM(X) for M > MO(f)

where gM is defined by (6.21), because (X) - 1 on supp f for M > M0 (f).

Equation (10.20) implies (6.20). To verify (6.22) note that by

(6.2) one has

SVM.(p, q )  fG q,(X,pq) vM(X) dX

(10.21)

- W-2 (p,q) A +(X,p,q) vM(X) dX
i G-

Now , E L 2 °C(A,G) and hence

A HL .. .. .
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(10.22) fG {(u ) VM + VV VvMI dX - 0

because vM E LD(G) and supp vM is compact. Indeed, vM - lmn in

L2 (G) where 0 E CO(G) and (10.22) holds with vM replaced by On by the

distribution definitions of A + and VP±. Similarly, one has

(10.23) fG {T+(A vM) + V±+. VvM} H - 0

because vM E D(AD(G)), supp vM is compact and E LD'LC(G). Combining

(10.21), (10.22) and (10.23) gives

(10.24) vM+(pq) - -w-2 (pq) P+(X,p,q) AvM(X) dX

Finally, combining (10.20) and (10.24) gives

V_(p,q) _ _ -2 (p,q)(4'(.,p,q),AvM )

(10.25)

= -2 (p,q) (*_(" ,P,q), f+gM+ZVM)

-2i" " (P,ql(f (P,q)+ ^M (p,q)+ zg~z(P,q))

Solving this equation for VM± gives (6.22) and hence (6.23).

To find the limiting form of (6.23) for M note that

IM(X)I <1 and O(X) 1 1 for all X e G when M . Moreover,

(10.26) lim gM - 0 in L2 (G)
M-
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because in the definition (6.21) Vu and u are in L2 (G), JV4M(I)I and

AV(X) are bounded uniformly for all M and supp gM C GM+1 - GM. Hence

passage to the limit M in (6.23) gives (6.18) for f E Lcom(G). The

general case follows by a density argument.

The Neumann Case. The method presented above can be used.

However, the definition of the multiplier FM must be modified to ensure

that vM E D(AN (G)). If M e C(G) then it is easy to show that

vM E L (A,G). The hypothesis G E S of §1 will be used to construct a

function O E C2 G) such that vM = Pu also satisfies the Neumann

boundary condition. The construction is similar to the one used above

to prove Theorem 4.6 in the Neumann case.

To construct let c(x,y), T(x,y) be the tangent-normal

coordinates defined in the neighborhoods 0 + (21m,0) of the points

((2m-l)n,y 0) as in §8 following (8.177). Define &2 by (8.178) as before

and let n1,n3 E C2(R) satisfy 0 < fj(a) < 1 and

1 for a < -6

(10.27) rn(a) =

0 for a > 6

where 6 > 0. Define
ij

(10.28) c(x,y) - nl(a) 2 (T) + n 3 (x - (2M+)r)[ - (T)

for all (x,y) E G r) {(x,y) : x > 0}. Note that if 0 < 6 < 7 then for

61, 62, 63 small enough one has

1 for x < (2M+l)r - 6,
(10.29) (P(x,y) -

0 for x > (2M+1)7+6 .

-*II... .. _
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Extend p to the rest of G by

(10.30) 4 (x,y) - 1 - 4 (-x,y) for (x,y) 6 G r) {(x,y) x < 0}

Finally let I (y) E C2 (R) satisfy 0 < '(y) < i, 4(y) 1 for y < M,

(y) - 0 for y > M + 1 and define

(10.31) KM(x,y) = 4(x,y) 2(y)

Then O has the desired properties. It is clear that E C1(G) and

(10.32) supp M C {(x,y) -(2M+1)r - 5 < x < (2M+l)iT+ 6,0 < y < M + i}

Moreover, in the strip ix - (2M + 1)Tr < 6, 0 < y f h, one has ,(T) - 1

and hence 4k(x,y) - n1 (a(x,y)). Similarly, in Ix + (2M + 1)7T r_ 6,

0 < y < h one has 41 (x,y) = 1 - n1 (a(x,y)). This property implies that

vM - Mu satisfies the Neumann boundary condition on r; see (8.184).

The remainder of the proof of Theorem 6.4 is the same as in the

Dirichlet case.

Proof of Theorem 6.5. It was remarked in §6 that (6.24) and

(6.26) are direct consequences of (6.27) (see [34, p. 110]). Relation

(6.27) will be derived from Theorem 6.4 and Stone's formula. The latter

states that if I = [a,b] C R then for all f e L2 (G) one has

(10.33) (f,[r(b)+f1(b-)-1(a)-ft(a-)]f) - lim f IR(A,X+io)f| 2 dX:Tr a-0+ I

Now Theorem 6.4 and Fubini's theorem imply that
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O j IR(A,X+iG)f 2 dX = F J1 JR T (Pq)-3-iF1T dp dq dL

(10.34)

Td( f2 .

R20 I U(-w2(p ,q))+2 _F j?±(p1q) 2 dp dq

Moreover, if

(10.35) K(a,p,q) = f dX
2T f1 (A wz(pq)

then 0 < K(a,p,q) < 1 for all (p,q) E R0 and a > 0 and lim K(a,p,q)

= X1 (W
2 (p,q)) for a - 0; [34, p. 98]. Hence (10.33) and (10.34) imply

(10. ~ ~ ~ ~ ~ ~ ~ ~ ~ (O 34 6) fimp"ly+ 1( ()-1 (-

(1 f(f Xi(W(p,q))jf+(pq)j2 dp dq

0J

by Lebesgue's dominated convergence theorem. On making a - b in (10.36)

and using the relation I((b-)-) = f(b-) one finds that 1(b) - I(b-) for

all b E R. Then putting f(b-) - n(b), n(a-) - 1(a) in (10.36) gives

(6.27).

Proof of Theorem 6.6. This result can be proved by the method

used for the case of exterior domains in [34, p. 113]. The multiplier

m of [34, p. 114] may be replaced by the function 0M used to prove

Theorem 6.4. The remaining details are the same as in [34] and will not

be repeated here.

Proof of Theorem 6.7. It will suffice to prove the relation

(6.32), or equivalently

I
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(10.37) 1 -Ifu

for all f E CO  - E).

As a first step, note that for all f(p,q) E L2 (Rz) one has

(10.38) ( *f)(X) -L 2(G)-lim f P+(X,p,q) f(p,q) dp dq
-M DM

The simple proof is the same as for the case of exterior domains [34,

p. 117]. If f E C0(Ro - E) then (10.38) can be written

(ofX) =R +(X,p,q) f(p,q) dp dq

(10.39)

I f J +(X,p+m,q) f(p+m,q) dp dq
mEZ B

o -

and only a finite number of terms in the sum are non-zero. In particular,

tne definition (6.5) of i_+ implies that

(10.40) (f)(X) = er 4.(x-2Tr,y,p+m,q) f(p+m) dp dq
mEZ Bo

for X E i(

Next note that

- 2  f ff(X)12 dX -0* f(X)1 2

(10.41)

r f I*f(x+7rZ,y)I2 dx dy

2.EZ fo4z
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Now (10.40) implies that for (x,y) E

(* f)(x+27rZ,y) - 1 1 / 2  F0 e 2TiZp 0(x,y,p+m,q) f(p+m,q)dq dp
meZ -1/2 (f

(10.42)

. 1f/2 i p ,
-1/2 7Z ('P* {f(p+ ,)})(X) dp

-1/2 +,p

by Lenmia 9.1. The interchange of summation and integration is elementary

because the sum is finite for f E C0 (R2 - E). Equation (10.42) states

that the left hand side of the equation, as a function of £ E Z, is the

set of Fourier coefficients of the function of p defined by _+,p+
po

Thus Parseval's relation for Fourier series implies

1/2

(10.43) J D* f(x+2rZ,Y) 12  1(,D_ {f(p+.,.)})(X)1 2 dpEZ -1r-/2 -' p P

Integrating (10.43) over X E i and using (10.41) gives, again by

Fubini's theorem,

* fl2 .1/2 ((* {f(p+.,')})(X)j2 dX dp
+ fj-/ 2 Q 7P2

(10.44)
" ii /2 ¢

= f-/2 0 {f(p+",")}N 2 dp) J-1/2 tP'

Now the orthogonality property for , Theorem 5.8, implies that

-'ppt@,p f(p+.,.)}02 g n{f (p+.,. }11 2

(10.45)

" = ;: [f(p+m,q) 2 dq
MEZ
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Combining (10.44) and (10.45) gives

(10.46) 0,t fl! 2 = Z fU (= 2fL2(R 2 )
- mEZ L(O(~) R

which is equivalent to (10.37).

$
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